Network analysis of synthesizable materials discovery
Predicting the synthesizability of inorganic materials is challenging due to the many variables and complex phenomena involved in synthesis. Here, the authors combine material stabilities with a historical analysis of experimental discovery timelines as a temporal network to predict the synthesizabi...
Enregistré dans:
Auteurs principaux: | Muratahan Aykol, Vinay I. Hegde, Linda Hung, Santosh Suram, Patrick Herring, Chris Wolverton, Jens S. Hummelshøj |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bc3f71be28634060b681de832add6283 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Robust and synthesizable photocatalysts for CO2 reduction: a data-driven materials discovery
par: Arunima K. Singh, et autres
Publié: (2019) -
Predicting synthesizability of crystalline materials via deep learning
par: Ali Davariashtiyani, et autres
Publié: (2021) -
High-Throughput Study of Lattice Thermal Conductivity in Binary Rocksalt and Zinc Blende Compounds Including Higher-Order Anharmonicity
par: Yi Xia, et autres
Publié: (2020) -
High-throughput computational design of cathode coatings for Li-ion batteries
par: Muratahan Aykol, et autres
Publié: (2016) -
Alleviating oxygen evolution from Li-excess oxide materials through theory-guided surface protection
par: Yongwoo Shin, et autres
Publié: (2018)