Efficient embedded sleep wake classification for open-source actigraphy
Abstract This study presents a thorough analysis of sleep/wake detection algorithms for efficient on-device sleep tracking using wearable accelerometric devices. It develops a novel end-to-end algorithm using convolutional neural network applied to raw accelerometric signals recorded by an open-sour...
Guardado en:
Autores principales: | Tommaso Banfi, Nicolò Valigi, Marco di Galante, Paola d’Ascanio, Gastone Ciuti, Ugo Faraguna |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc563d4fe26d448399528de23fc2ff5b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
pyActigraphy: Open-source python package for actigraphy data visualization and analysis.
por: Grégory Hammad, et al.
Publicado: (2021) -
Impact of Mandatory Wake Time on Sleep Timing, Sleep Quality and Rest-Activity Cycle in College and University Students Complaining of a Delayed Sleep Schedule: An Actigraphy Study
por: Moderie C, et al.
Publicado: (2020) -
Personalized Sleep Parameters Estimation from Actigraphy: A Machine Learning Approach
por: Khademi A, et al.
Publicado: (2019) -
Total sleep time obtained from actigraphy versus sleep logs in an academic sleep center and impact on further sleep testing
por: Auger RR, et al.
Publicado: (2013) -
Estimating adolescent sleep patterns: parent reports versus adolescent self-report surveys, sleep diaries, and actigraphy
por: Short MA, et al.
Publicado: (2013)