Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation
Abstract Differential cell counts is a challenging task when applying computer vision algorithms to pathology. Existing approaches to train cell recognition require high availability of multi-class segmentation and/or bounding box annotations and suffer in performance when objects are tightly cluste...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc5ecf7f2ac74511b28084801ee0ef06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bc5ecf7f2ac74511b28084801ee0ef06 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bc5ecf7f2ac74511b28084801ee0ef062021-12-02T15:10:46ZDifferential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation10.1038/s41598-021-96067-32045-2322https://doaj.org/article/bc5ecf7f2ac74511b28084801ee0ef062021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-96067-3https://doaj.org/toc/2045-2322Abstract Differential cell counts is a challenging task when applying computer vision algorithms to pathology. Existing approaches to train cell recognition require high availability of multi-class segmentation and/or bounding box annotations and suffer in performance when objects are tightly clustered. We present differential count network (“DCNet”), an annotation efficient modality that utilises keypoint detection to locate in brightfield images the centre points of cells (not nuclei) and their cell class. The single centre point annotation for DCNet lowered burden for experts to generate ground truth data by 77.1% compared to bounding box labeling. Yet centre point annotation still enabled high accuracy when training DCNet on a multi-class algorithm on whole cell features, matching human experts in all 5 object classes in average precision and outperforming humans in consistency. The efficacy and efficiency of the DCNet end-to-end system represents a significant progress toward an open source, fully computationally approach to differential cell count based diagnosis that can be adapted to any pathology need.Sarada M. W. LeeAndrew ShawJodie L. SimpsonDavid UminskyLuke W. GarrattNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sarada M. W. Lee Andrew Shaw Jodie L. Simpson David Uminsky Luke W. Garratt Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation |
description |
Abstract Differential cell counts is a challenging task when applying computer vision algorithms to pathology. Existing approaches to train cell recognition require high availability of multi-class segmentation and/or bounding box annotations and suffer in performance when objects are tightly clustered. We present differential count network (“DCNet”), an annotation efficient modality that utilises keypoint detection to locate in brightfield images the centre points of cells (not nuclei) and their cell class. The single centre point annotation for DCNet lowered burden for experts to generate ground truth data by 77.1% compared to bounding box labeling. Yet centre point annotation still enabled high accuracy when training DCNet on a multi-class algorithm on whole cell features, matching human experts in all 5 object classes in average precision and outperforming humans in consistency. The efficacy and efficiency of the DCNet end-to-end system represents a significant progress toward an open source, fully computationally approach to differential cell count based diagnosis that can be adapted to any pathology need. |
format |
article |
author |
Sarada M. W. Lee Andrew Shaw Jodie L. Simpson David Uminsky Luke W. Garratt |
author_facet |
Sarada M. W. Lee Andrew Shaw Jodie L. Simpson David Uminsky Luke W. Garratt |
author_sort |
Sarada M. W. Lee |
title |
Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation |
title_short |
Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation |
title_full |
Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation |
title_fullStr |
Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation |
title_full_unstemmed |
Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation |
title_sort |
differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/bc5ecf7f2ac74511b28084801ee0ef06 |
work_keys_str_mv |
AT saradamwlee differentialcellcountsusingcenterpointnetworksachieveshumanlevelaccuracyandefficiencyoversegmentation AT andrewshaw differentialcellcountsusingcenterpointnetworksachieveshumanlevelaccuracyandefficiencyoversegmentation AT jodielsimpson differentialcellcountsusingcenterpointnetworksachieveshumanlevelaccuracyandefficiencyoversegmentation AT daviduminsky differentialcellcountsusingcenterpointnetworksachieveshumanlevelaccuracyandefficiencyoversegmentation AT lukewgarratt differentialcellcountsusingcenterpointnetworksachieveshumanlevelaccuracyandefficiencyoversegmentation |
_version_ |
1718387716340580352 |