Differential cell counts using center-point networks achieves human-level accuracy and efficiency over segmentation
Abstract Differential cell counts is a challenging task when applying computer vision algorithms to pathology. Existing approaches to train cell recognition require high availability of multi-class segmentation and/or bounding box annotations and suffer in performance when objects are tightly cluste...
Guardado en:
Autores principales: | Sarada M. W. Lee, Andrew Shaw, Jodie L. Simpson, David Uminsky, Luke W. Garratt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc5ecf7f2ac74511b28084801ee0ef06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Point-of-care microvolume cytometer measures platelet counts with high accuracy from capillary blood.
por: William M Dickerson, et al.
Publicado: (2021) -
Increased Accuracy to c-Fos-Positive Neuron Counting
por: Wellington José da Silva, et al.
Publicado: (2021) -
Accuracy improvement of collocation method by using the over-range collocation points for 2-D and 3-D problems
por: Yong-Ming GUO, et al.
Publicado: (2014) -
Clinical Presentation of Celiac Disease and Diagnosis Accuracy in a Single-Center European Pediatric Cohort over 10 Years
por: Anna Rita Di Biase, et al.
Publicado: (2021) -
Integrating wetland bird point count data from humans and acoustic recorders
por: Laura N. Stewart, et al.
Publicado: (2020)