Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning

The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP com...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cristian R. Munteanu, Pablo Gutiérrez-Asorey, Manuel Blanes-Rodríguez, Ismael Hidalgo-Delgado, María de Jesús Blanco Liverio, Brais Castiñeiras Galdo, Ana B. Porto-Pazos, Marcos Gestal, Sonia Arrasate, Humbert González-Díaz
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/bc653968c828438fb3828f4972325001
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bc653968c828438fb3828f4972325001
record_format dspace
spelling oai:doaj.org-article:bc653968c828438fb3828f49723250012021-11-11T16:58:53ZPrediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning10.3390/ijms2221115191422-00671661-6596https://doaj.org/article/bc653968c828438fb3828f49723250012021-10-01T00:00:00Zhttps://www.mdpi.com/1422-0067/22/21/11519https://doaj.org/toc/1661-6596https://doaj.org/toc/1422-0067The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions. The raw dataset was obtained by mixing the nanoparticle experimental data with drug assays from the ChEMBL database. Ten types of machine learning methods have been tested. Only 41 features have been selected for 855,129 drug-nanoparticle complexes. The best model was obtained with the Bagging classifier, an ensemble meta-estimator based on 20 decision trees, with an area under the receiver operating characteristic curve (AUROC) of 0.96, and an accuracy of 87% (test subset). This model could be useful for the virtual screening of nanoparticle-drug complexes in glioblastoma. All the calculations can be reproduced with the datasets and python scripts, which are freely available as a GitHub repository from authors.Cristian R. MunteanuPablo Gutiérrez-AsoreyManuel Blanes-RodríguezIsmael Hidalgo-DelgadoMaría de Jesús Blanco LiverioBrais Castiñeiras GaldoAna B. Porto-PazosMarcos GestalSonia ArrasateHumbert González-DíazMDPI AGarticledecorated nanoparticlesdrug deliveryanti-glioblastomabig dataperturbation theorymachine learningBiology (General)QH301-705.5ChemistryQD1-999ENInternational Journal of Molecular Sciences, Vol 22, Iss 11519, p 11519 (2021)
institution DOAJ
collection DOAJ
language EN
topic decorated nanoparticles
drug delivery
anti-glioblastoma
big data
perturbation theory
machine learning
Biology (General)
QH301-705.5
Chemistry
QD1-999
spellingShingle decorated nanoparticles
drug delivery
anti-glioblastoma
big data
perturbation theory
machine learning
Biology (General)
QH301-705.5
Chemistry
QD1-999
Cristian R. Munteanu
Pablo Gutiérrez-Asorey
Manuel Blanes-Rodríguez
Ismael Hidalgo-Delgado
María de Jesús Blanco Liverio
Brais Castiñeiras Galdo
Ana B. Porto-Pazos
Marcos Gestal
Sonia Arrasate
Humbert González-Díaz
Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
description The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions. The raw dataset was obtained by mixing the nanoparticle experimental data with drug assays from the ChEMBL database. Ten types of machine learning methods have been tested. Only 41 features have been selected for 855,129 drug-nanoparticle complexes. The best model was obtained with the Bagging classifier, an ensemble meta-estimator based on 20 decision trees, with an area under the receiver operating characteristic curve (AUROC) of 0.96, and an accuracy of 87% (test subset). This model could be useful for the virtual screening of nanoparticle-drug complexes in glioblastoma. All the calculations can be reproduced with the datasets and python scripts, which are freely available as a GitHub repository from authors.
format article
author Cristian R. Munteanu
Pablo Gutiérrez-Asorey
Manuel Blanes-Rodríguez
Ismael Hidalgo-Delgado
María de Jesús Blanco Liverio
Brais Castiñeiras Galdo
Ana B. Porto-Pazos
Marcos Gestal
Sonia Arrasate
Humbert González-Díaz
author_facet Cristian R. Munteanu
Pablo Gutiérrez-Asorey
Manuel Blanes-Rodríguez
Ismael Hidalgo-Delgado
María de Jesús Blanco Liverio
Brais Castiñeiras Galdo
Ana B. Porto-Pazos
Marcos Gestal
Sonia Arrasate
Humbert González-Díaz
author_sort Cristian R. Munteanu
title Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
title_short Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
title_full Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
title_fullStr Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
title_full_unstemmed Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
title_sort prediction of anti-glioblastoma drug-decorated nanoparticle delivery systems using molecular descriptors and machine learning
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/bc653968c828438fb3828f4972325001
work_keys_str_mv AT cristianrmunteanu predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT pablogutierrezasorey predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT manuelblanesrodriguez predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT ismaelhidalgodelgado predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT mariadejesusblancoliverio predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT braiscastineirasgaldo predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT anabportopazos predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT marcosgestal predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT soniaarrasate predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT humbertgonzalezdiaz predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
_version_ 1718432199758315520