Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect.
The Warburg effect--a classical hallmark of cancer metabolism--is a counter-intuitive phenomenon in which rapidly proliferating cancer cells resort to inefficient ATP production via glycolysis leading to lactate secretion, instead of relying primarily on more efficient energy production through mito...
Guardado en:
Autores principales: | Tomer Shlomi, Tomer Benyamini, Eyal Gottlieb, Roded Sharan, Eytan Ruppin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc857921080949a0a2d8b9b497320061 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Genome-scale analysis of translation elongation with a ribosome flow model.
por: Shlomi Reuveni, et al.
Publicado: (2011) -
Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease
por: Tuulia Hyötyläinen, et al.
Publicado: (2016) -
Genome‐scale metabolic modeling reveals SARS‐CoV‐2‐induced metabolic changes and antiviral targets
por: Kuoyuan Cheng, et al.
Publicado: (2021) -
Spatial-fluxomics provides a subcellular-compartmentalized view of reductive glutamine metabolism in cancer cells
por: Won Dong Lee, et al.
Publicado: (2019) -
Aurora kinase A inhibition reverses the Warburg effect and elicits unique metabolic vulnerabilities in glioblastoma
por: Trang T. T. Nguyen, et al.
Publicado: (2021)