Exophagy of annexin A2 via RAB11, RAB8A and RAB27A in IFN-γ-stimulated lung epithelial cells
Abstract Annexin A2 (ANXA2), a phospholipid-binding protein, has multiple biological functions depending on its cellular localization. We previously demonstrated that IFN-γ-triggered ANXA2 secretion is associated with exosomal release. Here, we show that IFN-γ-induced autophagy is essential for the...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bc911b52e59b49cab717a6b1e9b33d46 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Annexin A2 (ANXA2), a phospholipid-binding protein, has multiple biological functions depending on its cellular localization. We previously demonstrated that IFN-γ-triggered ANXA2 secretion is associated with exosomal release. Here, we show that IFN-γ-induced autophagy is essential for the extracellular secretion of ANXA2 in lung epithelial cells. We observed colocalization of ANXA2-containing autophagosomes with multivesicular bodies (MVBs) after IFN-γ stimulation, followed by exosomal release. IFN-γ-induced exophagic release of ANXA2 could not be observed in ATG5-silenced or mutant RAB11-expressing cells. Furthermore, knockdown of RAB8A and RAB27A, but not RAB27B, reduced IFN-γ-triggered ANXA2 secretion. Surface translocation of ANXA2 enhanced efferocytosis by epithelial cells, and inhibition of different exophagic steps, including autophagosome formation, fusion of autophagosomes with MVBs, and fusion of amphisomes with plasma membrane, reduced ANXA2-mediated efferocytosis. Our data reveal a novel route of IFN-γ-induced exophagy of ANXA2. |
---|