Antimicrobial effect of blue light using Porphyromonas gingivalis pigment

Abstract The development of antibiotics cannot keep up with the speed of resistance acquired by microorganisms. Recently, the development of antimicrobial photodynamic therapy (aPDT) has been a necessary antimicrobial strategy against antibiotic resistance. Among the wide variety of bacteria found i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ayaka Yoshida, Haruka Sasaki, Toshizo Toyama, Mitsunori Araki, Jun Fujioka, Koichi Tsukiyama, Nobushiro Hamada, Fumihiko Yoshino
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/bc92e1502f1d43a987346c5971ddf672
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bc92e1502f1d43a987346c5971ddf672
record_format dspace
spelling oai:doaj.org-article:bc92e1502f1d43a987346c5971ddf6722021-12-02T15:05:55ZAntimicrobial effect of blue light using Porphyromonas gingivalis pigment10.1038/s41598-017-05706-12045-2322https://doaj.org/article/bc92e1502f1d43a987346c5971ddf6722017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05706-1https://doaj.org/toc/2045-2322Abstract The development of antibiotics cannot keep up with the speed of resistance acquired by microorganisms. Recently, the development of antimicrobial photodynamic therapy (aPDT) has been a necessary antimicrobial strategy against antibiotic resistance. Among the wide variety of bacteria found in the oral flora, Porphyromonas gingivalis (P. gingivalis) is one of the etiological agents of periodontal disease. aPDT has been studied for periodontal disease, but has risks of cytotoxicity to normal stained tissue. In this study, we performed aPDT using protoporphyrin IX (PpIX), an intracellular pigment of P. gingivalis, without an external photosensitizer. We confirmed singlet oxygen generation by PpIX in a blue-light irradiation intensity-dependent manner. We discovered that blue-light irradiation on P. gingivalis is potentially bactericidal. The sterilization mechanism seems to be oxidative DNA damage in bacterial cells. Although it is said that no resistant bacteria will emerge using aPDT, the conventional method relies on an added photosensitizer dye. PpIX in P. gingivalis is used in energy production, so aPDT applied to PpIX of P. gingivalis should limit the appearance of resistant bacteria. This approach not only has potential as an effective treatment for new periodontal diseases, but also offers potential antibacterial treatment for multiple drug resistant bacteria.Ayaka YoshidaHaruka SasakiToshizo ToyamaMitsunori ArakiJun FujiokaKoichi TsukiyamaNobushiro HamadaFumihiko YoshinoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ayaka Yoshida
Haruka Sasaki
Toshizo Toyama
Mitsunori Araki
Jun Fujioka
Koichi Tsukiyama
Nobushiro Hamada
Fumihiko Yoshino
Antimicrobial effect of blue light using Porphyromonas gingivalis pigment
description Abstract The development of antibiotics cannot keep up with the speed of resistance acquired by microorganisms. Recently, the development of antimicrobial photodynamic therapy (aPDT) has been a necessary antimicrobial strategy against antibiotic resistance. Among the wide variety of bacteria found in the oral flora, Porphyromonas gingivalis (P. gingivalis) is one of the etiological agents of periodontal disease. aPDT has been studied for periodontal disease, but has risks of cytotoxicity to normal stained tissue. In this study, we performed aPDT using protoporphyrin IX (PpIX), an intracellular pigment of P. gingivalis, without an external photosensitizer. We confirmed singlet oxygen generation by PpIX in a blue-light irradiation intensity-dependent manner. We discovered that blue-light irradiation on P. gingivalis is potentially bactericidal. The sterilization mechanism seems to be oxidative DNA damage in bacterial cells. Although it is said that no resistant bacteria will emerge using aPDT, the conventional method relies on an added photosensitizer dye. PpIX in P. gingivalis is used in energy production, so aPDT applied to PpIX of P. gingivalis should limit the appearance of resistant bacteria. This approach not only has potential as an effective treatment for new periodontal diseases, but also offers potential antibacterial treatment for multiple drug resistant bacteria.
format article
author Ayaka Yoshida
Haruka Sasaki
Toshizo Toyama
Mitsunori Araki
Jun Fujioka
Koichi Tsukiyama
Nobushiro Hamada
Fumihiko Yoshino
author_facet Ayaka Yoshida
Haruka Sasaki
Toshizo Toyama
Mitsunori Araki
Jun Fujioka
Koichi Tsukiyama
Nobushiro Hamada
Fumihiko Yoshino
author_sort Ayaka Yoshida
title Antimicrobial effect of blue light using Porphyromonas gingivalis pigment
title_short Antimicrobial effect of blue light using Porphyromonas gingivalis pigment
title_full Antimicrobial effect of blue light using Porphyromonas gingivalis pigment
title_fullStr Antimicrobial effect of blue light using Porphyromonas gingivalis pigment
title_full_unstemmed Antimicrobial effect of blue light using Porphyromonas gingivalis pigment
title_sort antimicrobial effect of blue light using porphyromonas gingivalis pigment
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/bc92e1502f1d43a987346c5971ddf672
work_keys_str_mv AT ayakayoshida antimicrobialeffectofbluelightusingporphyromonasgingivalispigment
AT harukasasaki antimicrobialeffectofbluelightusingporphyromonasgingivalispigment
AT toshizotoyama antimicrobialeffectofbluelightusingporphyromonasgingivalispigment
AT mitsunoriaraki antimicrobialeffectofbluelightusingporphyromonasgingivalispigment
AT junfujioka antimicrobialeffectofbluelightusingporphyromonasgingivalispigment
AT koichitsukiyama antimicrobialeffectofbluelightusingporphyromonasgingivalispigment
AT nobushirohamada antimicrobialeffectofbluelightusingporphyromonasgingivalispigment
AT fumihikoyoshino antimicrobialeffectofbluelightusingporphyromonasgingivalispigment
_version_ 1718388667727216640