Bromodomain factors of BET family are new essential actors of pericentric heterochromatin transcriptional activation in response to heat shock

Abstract The heat shock response is characterized by the transcriptional activation of both hsp genes and noncoding and repeated satellite III DNA sequences located at pericentric heterochromatin. Both events are under the control of Heat Shock Factor I (HSF1). Here we show that under heat shock, HS...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Edwige Col, Neda Hoghoughi, Solenne Dufour, Jessica Penin, Sivan Koskas, Virginie Faure, Maria Ouzounova, Hector Hernandez-Vargash, Nicolas Reynoird, Sylvain Daujat, Eric Folco, Marc Vigneron, Robert Schneider, André Verdel, Saadi Khochbin, Zdenko Herceg, Cécile Caron, Claire Vourc’h
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/bca9308205324eb9836b10ca9adb63ee
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The heat shock response is characterized by the transcriptional activation of both hsp genes and noncoding and repeated satellite III DNA sequences located at pericentric heterochromatin. Both events are under the control of Heat Shock Factor I (HSF1). Here we show that under heat shock, HSF1 recruits major cellular acetyltransferases, GCN5, TIP60 and p300 to pericentric heterochromatin leading to a targeted hyperacetylation of pericentric chromatin. Redistribution of histone acetylation toward pericentric region in turn directs the recruitment of Bromodomain and Extra-Terminal (BET) proteins BRD2, BRD3, BRD4, which are required for satellite III transcription by RNAP II. Altogether we uncover here a critical role for HSF1 in stressed cells relying on the restricted use of histone acetylation signaling over pericentric heterochromatin (HC).