A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile
Lake surface water temperature (LSWT) is a crucial water quality parameter that modulates many lake and reservoir processes. Therefore, it is necessary to monitor it from a long-term perspective. Over the last decades, many methods to retrieve LSWT fields from satellite imagery have been developed....
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bcac689f1dcb4611be4b2c86cd292f55 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bcac689f1dcb4611be4b2c86cd292f55 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bcac689f1dcb4611be4b2c86cd292f552021-11-25T18:54:07ZA Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile10.3390/rs132245442072-4292https://doaj.org/article/bcac689f1dcb4611be4b2c86cd292f552021-11-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/22/4544https://doaj.org/toc/2072-4292Lake surface water temperature (LSWT) is a crucial water quality parameter that modulates many lake and reservoir processes. Therefore, it is necessary to monitor it from a long-term perspective. Over the last decades, many methods to retrieve LSWT fields from satellite imagery have been developed. This work aims to test, implement and automate six methods. These are performed in the Google Earth Engine (GEE) platform, using 30 m spatial resolution images from Landsat 7 and 8 satellites for 2000–2020. Automated methods deliver long-term time series. Series are then calibrated with in situ data. Two-dimensional (2D) × time data fields are built on the lakes with the calibration, and a subsequent LSWT climatology is derived. Our study area is two urban lagoons with areas smaller than two (2) km<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula> of the city of San Pedro de la Paz, South-Central Chile. The six methods describe the seasonal variation of LSWT (Willmott’s index of agreement > 0.91, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> > 0.67). The main difference between series is their bias. Thus, after a simple calibration, all series adequately describe the LSWT. We utilized the Pedro de la Paz lagoons to demonstrate the method’s utility. Our research demonstrates that these adjacent lagoons exhibit comparable LSWT spatial (15.5–17 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C) and temporal (7–25 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C) trends throughout the year. Differences in geographical pattern might result from the northern island’s heat impact and the existence of the Biobío river to the east. Our work represents an efficient alternative for obtaining LSWT in particular lakes and reservoirs, especially useful in medium and small-sized ones.María Pedreros-GuardaRodrigo Abarca-del-RíoKaren EscalonaIgnacio GarcíaÓscar ParraMDPI AGarticlewater surface temperatureGoogle Earth Enginelakesremote sensingLandsatScienceQENRemote Sensing, Vol 13, Iss 4544, p 4544 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
water surface temperature Google Earth Engine lakes remote sensing Landsat Science Q |
spellingShingle |
water surface temperature Google Earth Engine lakes remote sensing Landsat Science Q María Pedreros-Guarda Rodrigo Abarca-del-Río Karen Escalona Ignacio García Óscar Parra A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile |
description |
Lake surface water temperature (LSWT) is a crucial water quality parameter that modulates many lake and reservoir processes. Therefore, it is necessary to monitor it from a long-term perspective. Over the last decades, many methods to retrieve LSWT fields from satellite imagery have been developed. This work aims to test, implement and automate six methods. These are performed in the Google Earth Engine (GEE) platform, using 30 m spatial resolution images from Landsat 7 and 8 satellites for 2000–2020. Automated methods deliver long-term time series. Series are then calibrated with in situ data. Two-dimensional (2D) × time data fields are built on the lakes with the calibration, and a subsequent LSWT climatology is derived. Our study area is two urban lagoons with areas smaller than two (2) km<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula> of the city of San Pedro de la Paz, South-Central Chile. The six methods describe the seasonal variation of LSWT (Willmott’s index of agreement > 0.91, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> > 0.67). The main difference between series is their bias. Thus, after a simple calibration, all series adequately describe the LSWT. We utilized the Pedro de la Paz lagoons to demonstrate the method’s utility. Our research demonstrates that these adjacent lagoons exhibit comparable LSWT spatial (15.5–17 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C) and temporal (7–25 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C) trends throughout the year. Differences in geographical pattern might result from the northern island’s heat impact and the existence of the Biobío river to the east. Our work represents an efficient alternative for obtaining LSWT in particular lakes and reservoirs, especially useful in medium and small-sized ones. |
format |
article |
author |
María Pedreros-Guarda Rodrigo Abarca-del-Río Karen Escalona Ignacio García Óscar Parra |
author_facet |
María Pedreros-Guarda Rodrigo Abarca-del-Río Karen Escalona Ignacio García Óscar Parra |
author_sort |
María Pedreros-Guarda |
title |
A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile |
title_short |
A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile |
title_full |
A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile |
title_fullStr |
A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile |
title_full_unstemmed |
A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile |
title_sort |
google earth engine application to retrieve long-term surface temperature for small lakes. case: san pedro lagoons, chile |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/bcac689f1dcb4611be4b2c86cd292f55 |
work_keys_str_mv |
AT mariapedrerosguarda agoogleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile AT rodrigoabarcadelrio agoogleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile AT karenescalona agoogleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile AT ignaciogarcia agoogleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile AT oscarparra agoogleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile AT mariapedrerosguarda googleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile AT rodrigoabarcadelrio googleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile AT karenescalona googleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile AT ignaciogarcia googleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile AT oscarparra googleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile |
_version_ |
1718410616608129024 |