A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile

Lake surface water temperature (LSWT) is a crucial water quality parameter that modulates many lake and reservoir processes. Therefore, it is necessary to monitor it from a long-term perspective. Over the last decades, many methods to retrieve LSWT fields from satellite imagery have been developed....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: María Pedreros-Guarda, Rodrigo Abarca-del-Río, Karen Escalona, Ignacio García, Óscar Parra
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/bcac689f1dcb4611be4b2c86cd292f55
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bcac689f1dcb4611be4b2c86cd292f55
record_format dspace
spelling oai:doaj.org-article:bcac689f1dcb4611be4b2c86cd292f552021-11-25T18:54:07ZA Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile10.3390/rs132245442072-4292https://doaj.org/article/bcac689f1dcb4611be4b2c86cd292f552021-11-01T00:00:00Zhttps://www.mdpi.com/2072-4292/13/22/4544https://doaj.org/toc/2072-4292Lake surface water temperature (LSWT) is a crucial water quality parameter that modulates many lake and reservoir processes. Therefore, it is necessary to monitor it from a long-term perspective. Over the last decades, many methods to retrieve LSWT fields from satellite imagery have been developed. This work aims to test, implement and automate six methods. These are performed in the Google Earth Engine (GEE) platform, using 30 m spatial resolution images from Landsat 7 and 8 satellites for 2000–2020. Automated methods deliver long-term time series. Series are then calibrated with in situ data. Two-dimensional (2D) × time data fields are built on the lakes with the calibration, and a subsequent LSWT climatology is derived. Our study area is two urban lagoons with areas smaller than two (2) km<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula> of the city of San Pedro de la Paz, South-Central Chile. The six methods describe the seasonal variation of LSWT (Willmott’s index of agreement > 0.91, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> > 0.67). The main difference between series is their bias. Thus, after a simple calibration, all series adequately describe the LSWT. We utilized the Pedro de la Paz lagoons to demonstrate the method’s utility. Our research demonstrates that these adjacent lagoons exhibit comparable LSWT spatial (15.5–17 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C) and temporal (7–25 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C) trends throughout the year. Differences in geographical pattern might result from the northern island’s heat impact and the existence of the Biobío river to the east. Our work represents an efficient alternative for obtaining LSWT in particular lakes and reservoirs, especially useful in medium and small-sized ones.María Pedreros-GuardaRodrigo Abarca-del-RíoKaren EscalonaIgnacio GarcíaÓscar ParraMDPI AGarticlewater surface temperatureGoogle Earth Enginelakesremote sensingLandsatScienceQENRemote Sensing, Vol 13, Iss 4544, p 4544 (2021)
institution DOAJ
collection DOAJ
language EN
topic water surface temperature
Google Earth Engine
lakes
remote sensing
Landsat
Science
Q
spellingShingle water surface temperature
Google Earth Engine
lakes
remote sensing
Landsat
Science
Q
María Pedreros-Guarda
Rodrigo Abarca-del-Río
Karen Escalona
Ignacio García
Óscar Parra
A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile
description Lake surface water temperature (LSWT) is a crucial water quality parameter that modulates many lake and reservoir processes. Therefore, it is necessary to monitor it from a long-term perspective. Over the last decades, many methods to retrieve LSWT fields from satellite imagery have been developed. This work aims to test, implement and automate six methods. These are performed in the Google Earth Engine (GEE) platform, using 30 m spatial resolution images from Landsat 7 and 8 satellites for 2000–2020. Automated methods deliver long-term time series. Series are then calibrated with in situ data. Two-dimensional (2D) × time data fields are built on the lakes with the calibration, and a subsequent LSWT climatology is derived. Our study area is two urban lagoons with areas smaller than two (2) km<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula> of the city of San Pedro de la Paz, South-Central Chile. The six methods describe the seasonal variation of LSWT (Willmott’s index of agreement > 0.91, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> > 0.67). The main difference between series is their bias. Thus, after a simple calibration, all series adequately describe the LSWT. We utilized the Pedro de la Paz lagoons to demonstrate the method’s utility. Our research demonstrates that these adjacent lagoons exhibit comparable LSWT spatial (15.5–17 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C) and temporal (7–25 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mo>∘</mo></msup></semantics></math></inline-formula>C) trends throughout the year. Differences in geographical pattern might result from the northern island’s heat impact and the existence of the Biobío river to the east. Our work represents an efficient alternative for obtaining LSWT in particular lakes and reservoirs, especially useful in medium and small-sized ones.
format article
author María Pedreros-Guarda
Rodrigo Abarca-del-Río
Karen Escalona
Ignacio García
Óscar Parra
author_facet María Pedreros-Guarda
Rodrigo Abarca-del-Río
Karen Escalona
Ignacio García
Óscar Parra
author_sort María Pedreros-Guarda
title A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile
title_short A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile
title_full A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile
title_fullStr A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile
title_full_unstemmed A Google Earth Engine Application to Retrieve Long-Term Surface Temperature for Small Lakes. Case: San Pedro Lagoons, Chile
title_sort google earth engine application to retrieve long-term surface temperature for small lakes. case: san pedro lagoons, chile
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/bcac689f1dcb4611be4b2c86cd292f55
work_keys_str_mv AT mariapedrerosguarda agoogleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile
AT rodrigoabarcadelrio agoogleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile
AT karenescalona agoogleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile
AT ignaciogarcia agoogleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile
AT oscarparra agoogleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile
AT mariapedrerosguarda googleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile
AT rodrigoabarcadelrio googleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile
AT karenescalona googleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile
AT ignaciogarcia googleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile
AT oscarparra googleearthengineapplicationtoretrievelongtermsurfacetemperatureforsmalllakescasesanpedrolagoonschile
_version_ 1718410616608129024