Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning

Conventional trial-error method is inefficient in discovering new functional materials in vast chemical and structural space. Here Lu et al. use machine learning techniques to screen out the most promising lead-free organic-inorganic perovskites with proper bandgap and stability from thousands of th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shuaihua Lu, Qionghua Zhou, Yixin Ouyang, Yilv Guo, Qiang Li, Jinlan Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/bcb0d28fe3204a178d14fd6593e5ada2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bcb0d28fe3204a178d14fd6593e5ada2
record_format dspace
spelling oai:doaj.org-article:bcb0d28fe3204a178d14fd6593e5ada22021-12-02T15:33:45ZAccelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning10.1038/s41467-018-05761-w2041-1723https://doaj.org/article/bcb0d28fe3204a178d14fd6593e5ada22018-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05761-whttps://doaj.org/toc/2041-1723Conventional trial-error method is inefficient in discovering new functional materials in vast chemical and structural space. Here Lu et al. use machine learning techniques to screen out the most promising lead-free organic-inorganic perovskites with proper bandgap and stability from thousands of them in a flash.Shuaihua LuQionghua ZhouYixin OuyangYilv GuoQiang LiJinlan WangNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Shuaihua Lu
Qionghua Zhou
Yixin Ouyang
Yilv Guo
Qiang Li
Jinlan Wang
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
description Conventional trial-error method is inefficient in discovering new functional materials in vast chemical and structural space. Here Lu et al. use machine learning techniques to screen out the most promising lead-free organic-inorganic perovskites with proper bandgap and stability from thousands of them in a flash.
format article
author Shuaihua Lu
Qionghua Zhou
Yixin Ouyang
Yilv Guo
Qiang Li
Jinlan Wang
author_facet Shuaihua Lu
Qionghua Zhou
Yixin Ouyang
Yilv Guo
Qiang Li
Jinlan Wang
author_sort Shuaihua Lu
title Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
title_short Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
title_full Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
title_fullStr Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
title_full_unstemmed Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
title_sort accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/bcb0d28fe3204a178d14fd6593e5ada2
work_keys_str_mv AT shuaihualu accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning
AT qionghuazhou accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning
AT yixinouyang accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning
AT yilvguo accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning
AT qiangli accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning
AT jinlanwang accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning
_version_ 1718387047297712128