Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
Conventional trial-error method is inefficient in discovering new functional materials in vast chemical and structural space. Here Lu et al. use machine learning techniques to screen out the most promising lead-free organic-inorganic perovskites with proper bandgap and stability from thousands of th...
        Guardado en:
      
    
                  | Autores principales: | , , , , , | 
|---|---|
| Formato: | article | 
| Lenguaje: | EN | 
| Publicado: | 
        
      Nature Portfolio    
    
      2018
     | 
| Materias: | |
| Acceso en línea: | https://doaj.org/article/bcb0d28fe3204a178d14fd6593e5ada2 | 
| Etiquetas: | 
       Agregar Etiqueta    
     
      Sin Etiquetas, Sea el primero en etiquetar este registro!
   
 | 
| id | 
                  oai:doaj.org-article:bcb0d28fe3204a178d14fd6593e5ada2 | 
    
|---|---|
| record_format | 
                  dspace | 
    
| spelling | 
                  oai:doaj.org-article:bcb0d28fe3204a178d14fd6593e5ada22021-12-02T15:33:45ZAccelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning10.1038/s41467-018-05761-w2041-1723https://doaj.org/article/bcb0d28fe3204a178d14fd6593e5ada22018-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05761-whttps://doaj.org/toc/2041-1723Conventional trial-error method is inefficient in discovering new functional materials in vast chemical and structural space. Here Lu et al. use machine learning techniques to screen out the most promising lead-free organic-inorganic perovskites with proper bandgap and stability from thousands of them in a flash.Shuaihua LuQionghua ZhouYixin OuyangYilv GuoQiang LiJinlan WangNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018) | 
    
| institution | 
                  DOAJ | 
    
| collection | 
                  DOAJ | 
    
| language | 
                  EN | 
    
| topic | 
                  Science Q  | 
    
| spellingShingle | 
                  Science Q Shuaihua Lu Qionghua Zhou Yixin Ouyang Yilv Guo Qiang Li Jinlan Wang Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning  | 
    
| description | 
                  Conventional trial-error method is inefficient in discovering new functional materials in vast chemical and structural space. Here Lu et al. use machine learning techniques to screen out the most promising lead-free organic-inorganic perovskites with proper bandgap and stability from thousands of them in a flash. | 
    
| format | 
                  article | 
    
| author | 
                  Shuaihua Lu Qionghua Zhou Yixin Ouyang Yilv Guo Qiang Li Jinlan Wang  | 
    
| author_facet | 
                  Shuaihua Lu Qionghua Zhou Yixin Ouyang Yilv Guo Qiang Li Jinlan Wang  | 
    
| author_sort | 
                  Shuaihua Lu | 
    
| title | 
                  Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning | 
    
| title_short | 
                  Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning | 
    
| title_full | 
                  Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning | 
    
| title_fullStr | 
                  Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning | 
    
| title_full_unstemmed | 
                  Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning | 
    
| title_sort | 
                  accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning | 
    
| publisher | 
                  Nature Portfolio | 
    
| publishDate | 
                  2018 | 
    
| url | 
                  https://doaj.org/article/bcb0d28fe3204a178d14fd6593e5ada2 | 
    
| work_keys_str_mv | 
                  AT shuaihualu accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning AT qionghuazhou accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning AT yixinouyang accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning AT yilvguo accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning AT qiangli accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning AT jinlanwang accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning  | 
    
| _version_ | 
                  1718387047297712128 |