Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
Conventional trial-error method is inefficient in discovering new functional materials in vast chemical and structural space. Here Lu et al. use machine learning techniques to screen out the most promising lead-free organic-inorganic perovskites with proper bandgap and stability from thousands of th...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bcb0d28fe3204a178d14fd6593e5ada2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bcb0d28fe3204a178d14fd6593e5ada2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bcb0d28fe3204a178d14fd6593e5ada22021-12-02T15:33:45ZAccelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning10.1038/s41467-018-05761-w2041-1723https://doaj.org/article/bcb0d28fe3204a178d14fd6593e5ada22018-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-05761-whttps://doaj.org/toc/2041-1723Conventional trial-error method is inefficient in discovering new functional materials in vast chemical and structural space. Here Lu et al. use machine learning techniques to screen out the most promising lead-free organic-inorganic perovskites with proper bandgap and stability from thousands of them in a flash.Shuaihua LuQionghua ZhouYixin OuyangYilv GuoQiang LiJinlan WangNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Shuaihua Lu Qionghua Zhou Yixin Ouyang Yilv Guo Qiang Li Jinlan Wang Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning |
description |
Conventional trial-error method is inefficient in discovering new functional materials in vast chemical and structural space. Here Lu et al. use machine learning techniques to screen out the most promising lead-free organic-inorganic perovskites with proper bandgap and stability from thousands of them in a flash. |
format |
article |
author |
Shuaihua Lu Qionghua Zhou Yixin Ouyang Yilv Guo Qiang Li Jinlan Wang |
author_facet |
Shuaihua Lu Qionghua Zhou Yixin Ouyang Yilv Guo Qiang Li Jinlan Wang |
author_sort |
Shuaihua Lu |
title |
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning |
title_short |
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning |
title_full |
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning |
title_fullStr |
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning |
title_full_unstemmed |
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning |
title_sort |
accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/bcb0d28fe3204a178d14fd6593e5ada2 |
work_keys_str_mv |
AT shuaihualu accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning AT qionghuazhou accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning AT yixinouyang accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning AT yilvguo accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning AT qiangli accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning AT jinlanwang accelerateddiscoveryofstableleadfreehybridorganicinorganicperovskitesviamachinelearning |
_version_ |
1718387047297712128 |