Global patterns and predictions of seafloor biomass using random forests.

A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chih-Lin Wei, Gilbert T Rowe, Elva Escobar-Briones, Antje Boetius, Thomas Soltwedel, M Julian Caley, Yousria Soliman, Falk Huettmann, Fangyuan Qu, Zishan Yu, C Roland Pitcher, Richard L Haedrich, Mary K Wicksten, Michael A Rex, Jeffrey G Baguley, Jyotsna Sharma, Roberto Danovaro, Ian R MacDonald, Clifton C Nunnally, Jody W Deming, Paul Montagna, Mélanie Lévesque, Jan Marcin Weslawski, Maria Wlodarska-Kowalczuk, Baban S Ingole, Brian J Bett, David S M Billett, Andrew Yool, Bodil A Bluhm, Katrin Iken, Bhavani E Narayanaswamy
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2010
Materias:
R
Q
Acceso en línea:https://doaj.org/article/bcb9d2ef25d947e98497c9ceea866276
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bcb9d2ef25d947e98497c9ceea866276
record_format dspace
spelling oai:doaj.org-article:bcb9d2ef25d947e98497c9ceea8662762021-11-18T07:00:55ZGlobal patterns and predictions of seafloor biomass using random forests.1932-620310.1371/journal.pone.0015323https://doaj.org/article/bcb9d2ef25d947e98497c9ceea8662762010-12-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21209928/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.Chih-Lin WeiGilbert T RoweElva Escobar-BrionesAntje BoetiusThomas SoltwedelM Julian CaleyYousria SolimanFalk HuettmannFangyuan QuZishan YuC Roland PitcherRichard L HaedrichMary K WickstenMichael A RexJeffrey G BaguleyJyotsna SharmaRoberto DanovaroIan R MacDonaldClifton C NunnallyJody W DemingPaul MontagnaMélanie LévesqueJan Marcin WeslawskiMaria Wlodarska-KowalczukBaban S IngoleBrian J BettDavid S M BillettAndrew YoolBodil A BluhmKatrin IkenBhavani E NarayanaswamyPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 5, Iss 12, p e15323 (2010)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Chih-Lin Wei
Gilbert T Rowe
Elva Escobar-Briones
Antje Boetius
Thomas Soltwedel
M Julian Caley
Yousria Soliman
Falk Huettmann
Fangyuan Qu
Zishan Yu
C Roland Pitcher
Richard L Haedrich
Mary K Wicksten
Michael A Rex
Jeffrey G Baguley
Jyotsna Sharma
Roberto Danovaro
Ian R MacDonald
Clifton C Nunnally
Jody W Deming
Paul Montagna
Mélanie Lévesque
Jan Marcin Weslawski
Maria Wlodarska-Kowalczuk
Baban S Ingole
Brian J Bett
David S M Billett
Andrew Yool
Bodil A Bluhm
Katrin Iken
Bhavani E Narayanaswamy
Global patterns and predictions of seafloor biomass using random forests.
description A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML) field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM), seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes). Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC) flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.
format article
author Chih-Lin Wei
Gilbert T Rowe
Elva Escobar-Briones
Antje Boetius
Thomas Soltwedel
M Julian Caley
Yousria Soliman
Falk Huettmann
Fangyuan Qu
Zishan Yu
C Roland Pitcher
Richard L Haedrich
Mary K Wicksten
Michael A Rex
Jeffrey G Baguley
Jyotsna Sharma
Roberto Danovaro
Ian R MacDonald
Clifton C Nunnally
Jody W Deming
Paul Montagna
Mélanie Lévesque
Jan Marcin Weslawski
Maria Wlodarska-Kowalczuk
Baban S Ingole
Brian J Bett
David S M Billett
Andrew Yool
Bodil A Bluhm
Katrin Iken
Bhavani E Narayanaswamy
author_facet Chih-Lin Wei
Gilbert T Rowe
Elva Escobar-Briones
Antje Boetius
Thomas Soltwedel
M Julian Caley
Yousria Soliman
Falk Huettmann
Fangyuan Qu
Zishan Yu
C Roland Pitcher
Richard L Haedrich
Mary K Wicksten
Michael A Rex
Jeffrey G Baguley
Jyotsna Sharma
Roberto Danovaro
Ian R MacDonald
Clifton C Nunnally
Jody W Deming
Paul Montagna
Mélanie Lévesque
Jan Marcin Weslawski
Maria Wlodarska-Kowalczuk
Baban S Ingole
Brian J Bett
David S M Billett
Andrew Yool
Bodil A Bluhm
Katrin Iken
Bhavani E Narayanaswamy
author_sort Chih-Lin Wei
title Global patterns and predictions of seafloor biomass using random forests.
title_short Global patterns and predictions of seafloor biomass using random forests.
title_full Global patterns and predictions of seafloor biomass using random forests.
title_fullStr Global patterns and predictions of seafloor biomass using random forests.
title_full_unstemmed Global patterns and predictions of seafloor biomass using random forests.
title_sort global patterns and predictions of seafloor biomass using random forests.
publisher Public Library of Science (PLoS)
publishDate 2010
url https://doaj.org/article/bcb9d2ef25d947e98497c9ceea866276
work_keys_str_mv AT chihlinwei globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT gilberttrowe globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT elvaescobarbriones globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT antjeboetius globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT thomassoltwedel globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT mjuliancaley globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT yousriasoliman globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT falkhuettmann globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT fangyuanqu globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT zishanyu globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT crolandpitcher globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT richardlhaedrich globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT marykwicksten globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT michaelarex globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT jeffreygbaguley globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT jyotsnasharma globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT robertodanovaro globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT ianrmacdonald globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT cliftoncnunnally globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT jodywdeming globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT paulmontagna globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT melanielevesque globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT janmarcinweslawski globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT mariawlodarskakowalczuk globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT babansingole globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT brianjbett globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT davidsmbillett globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT andrewyool globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT bodilabluhm globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT katriniken globalpatternsandpredictionsofseafloorbiomassusingrandomforests
AT bhavanienarayanaswamy globalpatternsandpredictionsofseafloorbiomassusingrandomforests
_version_ 1718424066482765824