Effects of interobserver and interdisciplinary segmentation variabilities on CT-based radiomics for pancreatic cancer
Abstract Radiomics is a method to mine large numbers of quantitative imaging features and develop predictive models. It has shown exciting promise for improved cancer decision support from early detection to personalized precision treatment, and therefore offers a desirable new direction for pancrea...
Guardado en:
Autores principales: | Jeffrey Wong, Michael Baine, Sarah Wisnoskie, Nathan Bennion, Dechun Zheng, Lei Yu, Vipin Dalal, Michael A. Hollingsworth, Chi Lin, Dandan Zheng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bcdb7caa7f194e2184b552cfd4028e59 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal Adenocarcinoma
por: Farzad Khalvati, et al.
Publicado: (2019) -
Author Correction: Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Christoph Haarburger, et al.
Publicado: (2021) -
CT Radiomics and Machine-Learning Models for Predicting Tumor-Stroma Ratio in Patients With Pancreatic Ductal Adenocarcinoma
por: Yinghao Meng, et al.
Publicado: (2021) -
Study on the prognosis predictive model of COVID-19 patients based on CT radiomics
por: Dandan Wang, et al.
Publicado: (2021) -
Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images
por: Yucheng Zhang, et al.
Publicado: (2021)