Benchmarking of cell type deconvolution pipelines for transcriptomics data
Inferring cell type proportions from transcriptomics data is affected by data transformation, normalization, choice of method and the markers used. Here, the authors use single-cell RNAseq datasets to evaluate the impact of these factors and propose guidelines to maximise deconvolution performance.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bce8d3da8b7e49c7b03795b732b6ebd6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bce8d3da8b7e49c7b03795b732b6ebd6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bce8d3da8b7e49c7b03795b732b6ebd62021-12-02T15:39:12ZBenchmarking of cell type deconvolution pipelines for transcriptomics data10.1038/s41467-020-19015-12041-1723https://doaj.org/article/bce8d3da8b7e49c7b03795b732b6ebd62020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19015-1https://doaj.org/toc/2041-1723Inferring cell type proportions from transcriptomics data is affected by data transformation, normalization, choice of method and the markers used. Here, the authors use single-cell RNAseq datasets to evaluate the impact of these factors and propose guidelines to maximise deconvolution performance.Francisco Avila CobosJosé Alquicira-HernandezJoseph E. PowellPieter MestdaghKatleen De PreterNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-14 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Francisco Avila Cobos José Alquicira-Hernandez Joseph E. Powell Pieter Mestdagh Katleen De Preter Benchmarking of cell type deconvolution pipelines for transcriptomics data |
description |
Inferring cell type proportions from transcriptomics data is affected by data transformation, normalization, choice of method and the markers used. Here, the authors use single-cell RNAseq datasets to evaluate the impact of these factors and propose guidelines to maximise deconvolution performance. |
format |
article |
author |
Francisco Avila Cobos José Alquicira-Hernandez Joseph E. Powell Pieter Mestdagh Katleen De Preter |
author_facet |
Francisco Avila Cobos José Alquicira-Hernandez Joseph E. Powell Pieter Mestdagh Katleen De Preter |
author_sort |
Francisco Avila Cobos |
title |
Benchmarking of cell type deconvolution pipelines for transcriptomics data |
title_short |
Benchmarking of cell type deconvolution pipelines for transcriptomics data |
title_full |
Benchmarking of cell type deconvolution pipelines for transcriptomics data |
title_fullStr |
Benchmarking of cell type deconvolution pipelines for transcriptomics data |
title_full_unstemmed |
Benchmarking of cell type deconvolution pipelines for transcriptomics data |
title_sort |
benchmarking of cell type deconvolution pipelines for transcriptomics data |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/bce8d3da8b7e49c7b03795b732b6ebd6 |
work_keys_str_mv |
AT franciscoavilacobos benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata AT josealquicirahernandez benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata AT josephepowell benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata AT pietermestdagh benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata AT katleendepreter benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata |
_version_ |
1718386012923625472 |