Benchmarking of cell type deconvolution pipelines for transcriptomics data

Inferring cell type proportions from transcriptomics data is affected by data transformation, normalization, choice of method and the markers used. Here, the authors use single-cell RNAseq datasets to evaluate the impact of these factors and propose guidelines to maximise deconvolution performance.

Guardado en:
Detalles Bibliográficos
Autores principales: Francisco Avila Cobos, José Alquicira-Hernandez, Joseph E. Powell, Pieter Mestdagh, Katleen De Preter
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/bce8d3da8b7e49c7b03795b732b6ebd6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bce8d3da8b7e49c7b03795b732b6ebd6
record_format dspace
spelling oai:doaj.org-article:bce8d3da8b7e49c7b03795b732b6ebd62021-12-02T15:39:12ZBenchmarking of cell type deconvolution pipelines for transcriptomics data10.1038/s41467-020-19015-12041-1723https://doaj.org/article/bce8d3da8b7e49c7b03795b732b6ebd62020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19015-1https://doaj.org/toc/2041-1723Inferring cell type proportions from transcriptomics data is affected by data transformation, normalization, choice of method and the markers used. Here, the authors use single-cell RNAseq datasets to evaluate the impact of these factors and propose guidelines to maximise deconvolution performance.Francisco Avila CobosJosé Alquicira-HernandezJoseph E. PowellPieter MestdaghKatleen De PreterNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Francisco Avila Cobos
José Alquicira-Hernandez
Joseph E. Powell
Pieter Mestdagh
Katleen De Preter
Benchmarking of cell type deconvolution pipelines for transcriptomics data
description Inferring cell type proportions from transcriptomics data is affected by data transformation, normalization, choice of method and the markers used. Here, the authors use single-cell RNAseq datasets to evaluate the impact of these factors and propose guidelines to maximise deconvolution performance.
format article
author Francisco Avila Cobos
José Alquicira-Hernandez
Joseph E. Powell
Pieter Mestdagh
Katleen De Preter
author_facet Francisco Avila Cobos
José Alquicira-Hernandez
Joseph E. Powell
Pieter Mestdagh
Katleen De Preter
author_sort Francisco Avila Cobos
title Benchmarking of cell type deconvolution pipelines for transcriptomics data
title_short Benchmarking of cell type deconvolution pipelines for transcriptomics data
title_full Benchmarking of cell type deconvolution pipelines for transcriptomics data
title_fullStr Benchmarking of cell type deconvolution pipelines for transcriptomics data
title_full_unstemmed Benchmarking of cell type deconvolution pipelines for transcriptomics data
title_sort benchmarking of cell type deconvolution pipelines for transcriptomics data
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/bce8d3da8b7e49c7b03795b732b6ebd6
work_keys_str_mv AT franciscoavilacobos benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata
AT josealquicirahernandez benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata
AT josephepowell benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata
AT pietermestdagh benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata
AT katleendepreter benchmarkingofcelltypedeconvolutionpipelinesfortranscriptomicsdata
_version_ 1718386012923625472