Revisiting the Dissimilarity Representation in the Context of Regression
In machine learning, a natural way to represent an instance is by using a feature vector. However, several studies have shown that this representation may not accurately characterize an object. For classification problems, the dissimilarity paradigm has been proposed as an alternative to the standar...
Enregistré dans:
Auteurs principaux: | Vicente Garcia, J. Salvador Sanchez, Rafael Martinez-Pelaez, Luis C. Mendez-Gonzalez |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bcf6a3c7b90c46798ec66106b046576c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Reduced-Reference Stereoscopic Image Quality Assessment Using Gradient Sparse Representation and Structural Degradation
par: Jian Ma, et autres
Publié: (2021) -
Robust Motor Imagery Classification Using Sparse Representations and Grouping Structures
par: Vangelis P. Oikonomou, et autres
Publié: (2020) -
Deep Regression Neural Network for End-to-End Person Re-Identification
par: Yingchun Guo, et autres
Publié: (2019) -
Rapid Calculation of Residual Stresses in Dissimilar S355–AA6082 Butt Welds
par: Francesco Leoni, et autres
Publié: (2021) -
Study the Factors Effecting on Welding Joint of Dissimilar Metals
par: Esam J. Ebraheam, et autres
Publié: (2011)