Optimizing respiratory virus surveillance networks using uncertainty propagation

Lack of a widespread surveillance network hampers accurate infectious disease forecasting. Here the authors provide a framework to optimize the selection of surveillance site locations and show that accurate forecasting of respiratory diseases for locations without surveillance is feasible.

Guardado en:
Detalles Bibliográficos
Autores principales: Sen Pei, Xian Teng, Paul Lewis, Jeffrey Shaman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/bd001cfa88104dd3ba7885b7b337e01a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Lack of a widespread surveillance network hampers accurate infectious disease forecasting. Here the authors provide a framework to optimize the selection of surveillance site locations and show that accurate forecasting of respiratory diseases for locations without surveillance is feasible.