Optimizing respiratory virus surveillance networks using uncertainty propagation
Lack of a widespread surveillance network hampers accurate infectious disease forecasting. Here the authors provide a framework to optimize the selection of surveillance site locations and show that accurate forecasting of respiratory diseases for locations without surveillance is feasible.
Guardado en:
Autores principales: | Sen Pei, Xian Teng, Paul Lewis, Jeffrey Shaman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bd001cfa88104dd3ba7885b7b337e01a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Surveillance of respiratory syncytial virus infections in adults, Austria, 2017 to 2019
por: Lorenz Schubert, et al.
Publicado: (2021) -
Counteracting structural errors in ensemble forecast of influenza outbreaks
por: Sen Pei, et al.
Publicado: (2017) -
Optimizing sentinel surveillance in temporal network epidemiology
por: Yuan Bai, et al.
Publicado: (2017) -
Optimizing provider recruitment for influenza surveillance networks.
por: Samuel V Scarpino, et al.
Publicado: (2012) -
Cohort profile: Indian Network of Population-Based Surveillance Platforms for Influenza and Other Respiratory Viruses among the Elderly (INSPIRE)
por: Rakesh Kumar, et al.
Publicado: (2021)