Configurable Hardware Core for IoT Object Detection

Object detection is an important task for many applications, like transportation, security, and medical applications. Many of these applications are needed on edge devices to make local decisions. Therefore, it is necessary to provide low-cost, fast solutions for object detection. This work proposes...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pedro R. Miranda, Daniel Pestana, João D. Lopes, Rui Policarpo Duarte, Mário P. Véstias, Horácio C. Neto, José T. de Sousa
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/bd055852bd1d4233ad824b714ad595ad
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bd055852bd1d4233ad824b714ad595ad
record_format dspace
spelling oai:doaj.org-article:bd055852bd1d4233ad824b714ad595ad2021-11-25T17:39:46ZConfigurable Hardware Core for IoT Object Detection10.3390/fi131102801999-5903https://doaj.org/article/bd055852bd1d4233ad824b714ad595ad2021-10-01T00:00:00Zhttps://www.mdpi.com/1999-5903/13/11/280https://doaj.org/toc/1999-5903Object detection is an important task for many applications, like transportation, security, and medical applications. Many of these applications are needed on edge devices to make local decisions. Therefore, it is necessary to provide low-cost, fast solutions for object detection. This work proposes a configurable hardware core on a field-programmable gate array (FPGA) for object detection. The configurability of the core allows its deployment on target devices with diverse hardware resources. The object detection accelerator is based on YOLO, for its good accuracy at moderate computational complexity. The solution was applied to the design of a core to accelerate the Tiny-YOLOv3, based on a CNN developed for constrained environments. However, it can be applied to other YOLO versions. The core was integrated into a full system-on-chip solution and tested with the COCO dataset. It achieved a performance from 7 to 14 FPS in a low-cost ZYNQ7020 FPGA, depending on the quantization, with an accuracy reduction from 2.1 to 1.4 points of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">A</mi><msub><mi mathvariant="normal">P</mi><mn>50</mn></msub></mrow></semantics></math></inline-formula>.Pedro R. MirandaDaniel PestanaJoão D. LopesRui Policarpo DuarteMário P. VéstiasHorácio C. NetoJosé T. de SousaMDPI AGarticleInternet of Thingsobject detectionYOLOFPGAInformation technologyT58.5-58.64ENFuture Internet, Vol 13, Iss 280, p 280 (2021)
institution DOAJ
collection DOAJ
language EN
topic Internet of Things
object detection
YOLO
FPGA
Information technology
T58.5-58.64
spellingShingle Internet of Things
object detection
YOLO
FPGA
Information technology
T58.5-58.64
Pedro R. Miranda
Daniel Pestana
João D. Lopes
Rui Policarpo Duarte
Mário P. Véstias
Horácio C. Neto
José T. de Sousa
Configurable Hardware Core for IoT Object Detection
description Object detection is an important task for many applications, like transportation, security, and medical applications. Many of these applications are needed on edge devices to make local decisions. Therefore, it is necessary to provide low-cost, fast solutions for object detection. This work proposes a configurable hardware core on a field-programmable gate array (FPGA) for object detection. The configurability of the core allows its deployment on target devices with diverse hardware resources. The object detection accelerator is based on YOLO, for its good accuracy at moderate computational complexity. The solution was applied to the design of a core to accelerate the Tiny-YOLOv3, based on a CNN developed for constrained environments. However, it can be applied to other YOLO versions. The core was integrated into a full system-on-chip solution and tested with the COCO dataset. It achieved a performance from 7 to 14 FPS in a low-cost ZYNQ7020 FPGA, depending on the quantization, with an accuracy reduction from 2.1 to 1.4 points of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">m</mi><mi mathvariant="normal">A</mi><msub><mi mathvariant="normal">P</mi><mn>50</mn></msub></mrow></semantics></math></inline-formula>.
format article
author Pedro R. Miranda
Daniel Pestana
João D. Lopes
Rui Policarpo Duarte
Mário P. Véstias
Horácio C. Neto
José T. de Sousa
author_facet Pedro R. Miranda
Daniel Pestana
João D. Lopes
Rui Policarpo Duarte
Mário P. Véstias
Horácio C. Neto
José T. de Sousa
author_sort Pedro R. Miranda
title Configurable Hardware Core for IoT Object Detection
title_short Configurable Hardware Core for IoT Object Detection
title_full Configurable Hardware Core for IoT Object Detection
title_fullStr Configurable Hardware Core for IoT Object Detection
title_full_unstemmed Configurable Hardware Core for IoT Object Detection
title_sort configurable hardware core for iot object detection
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/bd055852bd1d4233ad824b714ad595ad
work_keys_str_mv AT pedrormiranda configurablehardwarecoreforiotobjectdetection
AT danielpestana configurablehardwarecoreforiotobjectdetection
AT joaodlopes configurablehardwarecoreforiotobjectdetection
AT ruipolicarpoduarte configurablehardwarecoreforiotobjectdetection
AT mariopvestias configurablehardwarecoreforiotobjectdetection
AT horaciocneto configurablehardwarecoreforiotobjectdetection
AT josetdesousa configurablehardwarecoreforiotobjectdetection
_version_ 1718412128970342400