Genome‐enabled prediction for sparse testing in multi‐environmental wheat trials
Abstract Sparse testing in genome‐enabled prediction in plant breeding can be emulated throughout different line allocations where some lines are observed in all environments (overlap) and others are observed in only one environment (nonoverlap). We studied three general cases of the composition of...
Guardado en:
Autores principales: | Leonardo Crespo‐Herrera, Reka Howard, Hans‐Peter Piepho, Paulino Pérez‐Rodríguez, Osval Montesinos‐Lopez, Juan Burgueño, Ravi Singh, Suchismita Mondal, Diego Jarquín, Jose Crossa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bd11103f902b48adbebe56a030d98097 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep‐learning power and perspectives for genomic selection
por: Osval Antonio Montesinos‐López, et al.
Publicado: (2021) -
Application of a Poisson deep neural network model for the prediction of count data in genome‐based prediction
por: Osval A. Montesinos‐Lopez, et al.
Publicado: (2021) -
Assessing combining abilities, genomic data, and genotype × environment interactions to predict hybrid grain sorghum performance
por: Jales M. O. Fonseca, et al.
Publicado: (2021) -
Optimizing the setup of multienvironmental hybrid wheat yield trials for boosting the selection capability
por: Moritz Lell, et al.
Publicado: (2021) -
Environment characterization and genomic prediction for end‐use quality traits in soft white winter wheat
por: Meriem Aoun, et al.
Publicado: (2021)