Takotsubo Syndrome – Predictable from brain imaging data

Abstract Takotsubo syndrome (TTS) is characterized by acute left ventricular dysfunction, with a hospital-mortality rate similar to acute coronary syndrome (ACS). However, the aetiology of TTS is still unknown. In the present study, a multivariate pattern analysis using machine learning with multimo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carina Klein, Thierry Hiestand, Jelena-Rima Ghadri, Christian Templin, Lutz Jäncke, Jürgen Hänggi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/bd2f292601b84e14897a85ddc605c516
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bd2f292601b84e14897a85ddc605c516
record_format dspace
spelling oai:doaj.org-article:bd2f292601b84e14897a85ddc605c5162021-12-02T11:51:11ZTakotsubo Syndrome – Predictable from brain imaging data10.1038/s41598-017-05592-72045-2322https://doaj.org/article/bd2f292601b84e14897a85ddc605c5162017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-05592-7https://doaj.org/toc/2045-2322Abstract Takotsubo syndrome (TTS) is characterized by acute left ventricular dysfunction, with a hospital-mortality rate similar to acute coronary syndrome (ACS). However, the aetiology of TTS is still unknown. In the present study, a multivariate pattern analysis using machine learning with multimodal magnetic resonance imaging (MRI) data of the human brain of TTS patients and age- and gender-matched healthy control subjects was performed. We found consistent structural and functional alterations in TTS patients compared to the control group. In particular, anatomical and neurophysiological measures from brain regions constituting the emotional-autonomic control system contributed to a prediction accuracy of more than 82%. Thus, our findings demonstrate homogeneous neuronal alterations in TTS patients and substantiate the importance of the concept of a brain-heart interaction in TTS.Carina KleinThierry HiestandJelena-Rima GhadriChristian TemplinLutz JänckeJürgen HänggiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-7 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Carina Klein
Thierry Hiestand
Jelena-Rima Ghadri
Christian Templin
Lutz Jäncke
Jürgen Hänggi
Takotsubo Syndrome – Predictable from brain imaging data
description Abstract Takotsubo syndrome (TTS) is characterized by acute left ventricular dysfunction, with a hospital-mortality rate similar to acute coronary syndrome (ACS). However, the aetiology of TTS is still unknown. In the present study, a multivariate pattern analysis using machine learning with multimodal magnetic resonance imaging (MRI) data of the human brain of TTS patients and age- and gender-matched healthy control subjects was performed. We found consistent structural and functional alterations in TTS patients compared to the control group. In particular, anatomical and neurophysiological measures from brain regions constituting the emotional-autonomic control system contributed to a prediction accuracy of more than 82%. Thus, our findings demonstrate homogeneous neuronal alterations in TTS patients and substantiate the importance of the concept of a brain-heart interaction in TTS.
format article
author Carina Klein
Thierry Hiestand
Jelena-Rima Ghadri
Christian Templin
Lutz Jäncke
Jürgen Hänggi
author_facet Carina Klein
Thierry Hiestand
Jelena-Rima Ghadri
Christian Templin
Lutz Jäncke
Jürgen Hänggi
author_sort Carina Klein
title Takotsubo Syndrome – Predictable from brain imaging data
title_short Takotsubo Syndrome – Predictable from brain imaging data
title_full Takotsubo Syndrome – Predictable from brain imaging data
title_fullStr Takotsubo Syndrome – Predictable from brain imaging data
title_full_unstemmed Takotsubo Syndrome – Predictable from brain imaging data
title_sort takotsubo syndrome – predictable from brain imaging data
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/bd2f292601b84e14897a85ddc605c516
work_keys_str_mv AT carinaklein takotsubosyndromepredictablefrombrainimagingdata
AT thierryhiestand takotsubosyndromepredictablefrombrainimagingdata
AT jelenarimaghadri takotsubosyndromepredictablefrombrainimagingdata
AT christiantemplin takotsubosyndromepredictablefrombrainimagingdata
AT lutzjancke takotsubosyndromepredictablefrombrainimagingdata
AT jurgenhanggi takotsubosyndromepredictablefrombrainimagingdata
_version_ 1718395188271906816