A deconvolutional Bayesian mixing model approach for river basin sediment source apportionment
Abstract Increasing complexity in human-environment interactions at multiple watershed scales presents major challenges to sediment source apportionment data acquisition and analysis. Herein, we present a step-change in the application of Bayesian mixing models: Deconvolutional-MixSIAR (D-MIXSIAR) t...
Guardado en:
Autores principales: | William H. Blake, Pascal Boeckx, Brian C. Stock, Hugh G. Smith, Samuel Bodé, Hari R. Upadhayay, Leticia Gaspar, Rupert Goddard, Amy T. Lennard, Ivan Lizaga, David A. Lobb, Philip N. Owens, Ellen L. Petticrew, Zou Zou A. Kuzyk, Bayu D. Gari, Linus Munishi, Kelvin Mtei, Amsalu Nebiyu, Lionel Mabit, Ana Navas, Brice X. Semmens |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bd359d5009f242559baa150c94ec9127 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deconvoluting hepatic processing of carbon nanotubes
por: Simone Alidori, et al.
Publicado: (2016) -
Single-Cell Approaches to Deconvolute the Development of HSCs
por: Yang Xiang, et al.
Publicado: (2021) -
Assessment of water quality and apportionment of pollution sources of an urban lake using multivariate statistical analysis
por: Kalimur Rahman, Ph.D., et al.
Publicado: (2021) -
Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China
por: Lei Chai, et al.
Publicado: (2021) -
Deconvolution methods used for the development of a neutron spectrometer
por: Simonetti Claude-Alexandre, et al.
Publicado: (2021)