Statistical Study of Nonthermal Plasma-Assisted ZnO Coating of Cotton Fabric through Ultrasonic-Assisted Green Synthesis for Improved Self-Cleaning and Antimicrobial Properties
Nonthermal plasma processing is a dry, environment-friendly and chemical-free method of improving the wettability, adhesion, self-cleaning and dying quality of fabrics without affecting their bulk properties. This study presents a green synthesis and coating method for the immobilization of nanopart...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bd37a3b48a2c4031933289cc50447c71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Nonthermal plasma processing is a dry, environment-friendly and chemical-free method of improving the wettability, adhesion, self-cleaning and dying quality of fabrics without affecting their bulk properties. This study presents a green synthesis and coating method for the immobilization of nanoparticles of ZnO on the nonthermal plasma functionalized cotton fabric. The self-cleaning activity of ZnO-coated cotton was then optimized statistically. The ultraviolet protection and antimicrobial activity of the optimized and a control sample were also elaborated in this study. <i>Psidium guajava Linn</i> (guava) plant extract and zinc chloride were used in the ultrasonic biosynthesis of ZnO nanoparticles and concurrent immobilization over plasma functionalized cotton. Sodium hydroxide was used as a reaction accelerator. Statistical complete composite design (CCD) based on the amount of ZnCl<sub>2</sub>, NaOH and plasma exposure time was used to optimize the role of input parameters on the self-cleaning ability of the coated cotton. Methylene blue in water was used as a sample pollutant in the self-cleaning study. The ZnO-coated cotton showed notably high self-cleaning activity of 94% and a UV protection factor of 69.87. The antimicrobial activity against E. Coli and S. Aureus bacteria was also appreciably high compared to the control. |
---|