Predicting adult neuroscience intensive care unit admission from emergency department triage using a retrospective, tabular-free text machine learning approach
Abstract Early admission to the neurosciences intensive care unit (NSICU) is associated with improved patient outcomes. Natural language processing offers new possibilities for mining free text in electronic health record data. We sought to develop a machine learning model using both tabular and fre...
Guardado en:
Autores principales: | Eyal Klang, Benjamin R. Kummer, Neha S. Dangayach, Amy Zhong, M. Arash Kia, Prem Timsina, Ian Cossentino, Anthony B. Costa, Matthew A. Levin, Eric K. Oermann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bd3eaf6342be421885a39e0d850a360c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Managing patient expectations at emergency department triage
por: Shital Shah, et al.
Publicado: (2015) -
Synergistic effect of hypoalbuminaemia and hypotension in predicting in-hospital mortality and intensive care admission: a retrospective cohort study
por: Eyal Klang, et al.
Publicado: (2021) -
Triaging and referring in adjacent general and emergency departments (the TRIAGE trial): A cluster randomised controlled trial.
por: Stefan Morreel, et al.
Publicado: (2021) -
Triaging and referring in adjacent general and emergency departments (the TRIAGE trial): A cluster randomised controlled trial
por: Stefan Morreel, et al.
Publicado: (2021) -
Machine Learning Model for Outcome Prediction of Patients Suffering from Acute Diverticulitis Arriving at the Emergency Department—A Proof of Concept Study
por: Eyal Klang, et al.
Publicado: (2021)