Drude-Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron-Phonon Nonequilibrium

Evaluating the optical properties of matter under the action of ultrafast light is crucial in modeling laser–surface interaction and interpreting laser processing experiments. We report optimized coefficients for the Drude-Lorentz model describing the permittivity of several transition metals (Cr, W...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Elena Silaeva, Louis Saddier, Jean-Philippe Colombier
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/bd4af8c531a448239154b3be6884d030
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bd4af8c531a448239154b3be6884d030
record_format dspace
spelling oai:doaj.org-article:bd4af8c531a448239154b3be6884d0302021-11-11T15:00:17ZDrude-Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron-Phonon Nonequilibrium10.3390/app112199022076-3417https://doaj.org/article/bd4af8c531a448239154b3be6884d0302021-10-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/21/9902https://doaj.org/toc/2076-3417Evaluating the optical properties of matter under the action of ultrafast light is crucial in modeling laser–surface interaction and interpreting laser processing experiments. We report optimized coefficients for the Drude-Lorentz model describing the permittivity of several transition metals (Cr, W, Ti, Fe, Au, and Ni) under electron-phonon nonequilibrium, with electrons heated up to 30,000 K and the lattice staying cold at 300 K. A Basin-hopping algorithm is used to fit the Drude-Lorentz model to the nonequilibrium permittivity calculated using ab initio methods. The fitting coefficients are provided and can be easily inserted into any calculation requiring the optical response of the metals during ultrafast irradiation. Moreover, our results shed light on the electronic structure modifications and the relative contributions of intraband and interband optical transitions at high electron temperatures corresponding to the laser excitation fluence used for surface nanostructuring.Elena SilaevaLouis SaddierJean-Philippe ColombierMDPI AGarticleDrude-Lorentz modelab initiooptical propertiesultrafast-laser excitationtransition metalsnanostructuringTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 9902, p 9902 (2021)
institution DOAJ
collection DOAJ
language EN
topic Drude-Lorentz model
ab initio
optical properties
ultrafast-laser excitation
transition metals
nanostructuring
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
spellingShingle Drude-Lorentz model
ab initio
optical properties
ultrafast-laser excitation
transition metals
nanostructuring
Technology
T
Engineering (General). Civil engineering (General)
TA1-2040
Biology (General)
QH301-705.5
Physics
QC1-999
Chemistry
QD1-999
Elena Silaeva
Louis Saddier
Jean-Philippe Colombier
Drude-Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron-Phonon Nonequilibrium
description Evaluating the optical properties of matter under the action of ultrafast light is crucial in modeling laser–surface interaction and interpreting laser processing experiments. We report optimized coefficients for the Drude-Lorentz model describing the permittivity of several transition metals (Cr, W, Ti, Fe, Au, and Ni) under electron-phonon nonequilibrium, with electrons heated up to 30,000 K and the lattice staying cold at 300 K. A Basin-hopping algorithm is used to fit the Drude-Lorentz model to the nonequilibrium permittivity calculated using ab initio methods. The fitting coefficients are provided and can be easily inserted into any calculation requiring the optical response of the metals during ultrafast irradiation. Moreover, our results shed light on the electronic structure modifications and the relative contributions of intraband and interband optical transitions at high electron temperatures corresponding to the laser excitation fluence used for surface nanostructuring.
format article
author Elena Silaeva
Louis Saddier
Jean-Philippe Colombier
author_facet Elena Silaeva
Louis Saddier
Jean-Philippe Colombier
author_sort Elena Silaeva
title Drude-Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron-Phonon Nonequilibrium
title_short Drude-Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron-Phonon Nonequilibrium
title_full Drude-Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron-Phonon Nonequilibrium
title_fullStr Drude-Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron-Phonon Nonequilibrium
title_full_unstemmed Drude-Lorentz Model for Optical Properties of Photoexcited Transition Metals under Electron-Phonon Nonequilibrium
title_sort drude-lorentz model for optical properties of photoexcited transition metals under electron-phonon nonequilibrium
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/bd4af8c531a448239154b3be6884d030
work_keys_str_mv AT elenasilaeva drudelorentzmodelforopticalpropertiesofphotoexcitedtransitionmetalsunderelectronphononnonequilibrium
AT louissaddier drudelorentzmodelforopticalpropertiesofphotoexcitedtransitionmetalsunderelectronphononnonequilibrium
AT jeanphilippecolombier drudelorentzmodelforopticalpropertiesofphotoexcitedtransitionmetalsunderelectronphononnonequilibrium
_version_ 1718437923320233984