The Elephant Problem—Determining Bulk Thermal Diffusivity
This study investigates a measurement method of thermal diffusivity for samples with arbitrary geometries and unknown material properties. The aim is to curve fit the thermal diffusivity with the use of a numerical simulation and transient temperature measurement inside the object of interest. This...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bd527120182e4a1aa60306dfe37a8091 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bd527120182e4a1aa60306dfe37a8091 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bd527120182e4a1aa60306dfe37a80912021-11-11T16:09:43ZThe Elephant Problem—Determining Bulk Thermal Diffusivity10.3390/en142174441996-1073https://doaj.org/article/bd527120182e4a1aa60306dfe37a80912021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/21/7444https://doaj.org/toc/1996-1073This study investigates a measurement method of thermal diffusivity for samples with arbitrary geometries and unknown material properties. The aim is to curve fit the thermal diffusivity with the use of a numerical simulation and transient temperature measurement inside the object of interest. This approach is designed to assess bulk material properties of an object that has a composite material structure such as underground soil. The method creates the boundary conditions necessary to apply analytical theory found in the literature. It was found that measurements best correlated with theory and simulation at positions between the center and surface of an object.Robert BeaufaitSebastian AmmannLudger FischerMDPI AGarticlethermal diffusivitymeasurement methodenergy storageTechnologyTENEnergies, Vol 14, Iss 7444, p 7444 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
thermal diffusivity measurement method energy storage Technology T |
spellingShingle |
thermal diffusivity measurement method energy storage Technology T Robert Beaufait Sebastian Ammann Ludger Fischer The Elephant Problem—Determining Bulk Thermal Diffusivity |
description |
This study investigates a measurement method of thermal diffusivity for samples with arbitrary geometries and unknown material properties. The aim is to curve fit the thermal diffusivity with the use of a numerical simulation and transient temperature measurement inside the object of interest. This approach is designed to assess bulk material properties of an object that has a composite material structure such as underground soil. The method creates the boundary conditions necessary to apply analytical theory found in the literature. It was found that measurements best correlated with theory and simulation at positions between the center and surface of an object. |
format |
article |
author |
Robert Beaufait Sebastian Ammann Ludger Fischer |
author_facet |
Robert Beaufait Sebastian Ammann Ludger Fischer |
author_sort |
Robert Beaufait |
title |
The Elephant Problem—Determining Bulk Thermal Diffusivity |
title_short |
The Elephant Problem—Determining Bulk Thermal Diffusivity |
title_full |
The Elephant Problem—Determining Bulk Thermal Diffusivity |
title_fullStr |
The Elephant Problem—Determining Bulk Thermal Diffusivity |
title_full_unstemmed |
The Elephant Problem—Determining Bulk Thermal Diffusivity |
title_sort |
elephant problem—determining bulk thermal diffusivity |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/bd527120182e4a1aa60306dfe37a8091 |
work_keys_str_mv |
AT robertbeaufait theelephantproblemdeterminingbulkthermaldiffusivity AT sebastianammann theelephantproblemdeterminingbulkthermaldiffusivity AT ludgerfischer theelephantproblemdeterminingbulkthermaldiffusivity AT robertbeaufait elephantproblemdeterminingbulkthermaldiffusivity AT sebastianammann elephantproblemdeterminingbulkthermaldiffusivity AT ludgerfischer elephantproblemdeterminingbulkthermaldiffusivity |
_version_ |
1718432437333131264 |