The chemical signatures underlying host plant discrimination by aphids
Abstract The diversity of phytophagous insects is largely attributable to speciation involving shifts between host plants. These shifts are mediated by the close interaction between insects and plant metabolites. However, there has been limited progress in understanding the chemical signatures that...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bd57f1ead4684a0d99887c5e2da175d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bd57f1ead4684a0d99887c5e2da175d4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bd57f1ead4684a0d99887c5e2da175d42021-12-02T12:32:37ZThe chemical signatures underlying host plant discrimination by aphids10.1038/s41598-017-07729-02045-2322https://doaj.org/article/bd57f1ead4684a0d99887c5e2da175d42017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07729-0https://doaj.org/toc/2045-2322Abstract The diversity of phytophagous insects is largely attributable to speciation involving shifts between host plants. These shifts are mediated by the close interaction between insects and plant metabolites. However, there has been limited progress in understanding the chemical signatures that underlie host preferences. We use the pea aphid (Acyrthosiphon pisum) to address this problem. Host-associated races of pea aphid discriminate between plant species in race-specific ways. We combined metabolomic profiling of multiple plant species with behavioural tests on two A. pisum races, to identify metabolites that explain variation in either acceptance or discrimination. Candidate compounds were identified using tandem mass spectrometry. Our results reveal a small number of compounds that explain a large proportion of variation in the differential acceptability of plants to A. pisum races. Two of these were identified as L-phenylalanine and L-tyrosine but it may be that metabolically-related compounds directly influence insect behaviour. The compounds implicated in differential acceptability were not related to the set correlated with general acceptability of plants to aphids, regardless of host race. Small changes in response to common metabolites may underlie host shifts. This study opens new opportunities for understanding the mechanistic basis of host discrimination and host shifts in insects.David P. HopkinsDuncan D. CameronRoger K. ButlinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q David P. Hopkins Duncan D. Cameron Roger K. Butlin The chemical signatures underlying host plant discrimination by aphids |
description |
Abstract The diversity of phytophagous insects is largely attributable to speciation involving shifts between host plants. These shifts are mediated by the close interaction between insects and plant metabolites. However, there has been limited progress in understanding the chemical signatures that underlie host preferences. We use the pea aphid (Acyrthosiphon pisum) to address this problem. Host-associated races of pea aphid discriminate between plant species in race-specific ways. We combined metabolomic profiling of multiple plant species with behavioural tests on two A. pisum races, to identify metabolites that explain variation in either acceptance or discrimination. Candidate compounds were identified using tandem mass spectrometry. Our results reveal a small number of compounds that explain a large proportion of variation in the differential acceptability of plants to A. pisum races. Two of these were identified as L-phenylalanine and L-tyrosine but it may be that metabolically-related compounds directly influence insect behaviour. The compounds implicated in differential acceptability were not related to the set correlated with general acceptability of plants to aphids, regardless of host race. Small changes in response to common metabolites may underlie host shifts. This study opens new opportunities for understanding the mechanistic basis of host discrimination and host shifts in insects. |
format |
article |
author |
David P. Hopkins Duncan D. Cameron Roger K. Butlin |
author_facet |
David P. Hopkins Duncan D. Cameron Roger K. Butlin |
author_sort |
David P. Hopkins |
title |
The chemical signatures underlying host plant discrimination by aphids |
title_short |
The chemical signatures underlying host plant discrimination by aphids |
title_full |
The chemical signatures underlying host plant discrimination by aphids |
title_fullStr |
The chemical signatures underlying host plant discrimination by aphids |
title_full_unstemmed |
The chemical signatures underlying host plant discrimination by aphids |
title_sort |
chemical signatures underlying host plant discrimination by aphids |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/bd57f1ead4684a0d99887c5e2da175d4 |
work_keys_str_mv |
AT davidphopkins thechemicalsignaturesunderlyinghostplantdiscriminationbyaphids AT duncandcameron thechemicalsignaturesunderlyinghostplantdiscriminationbyaphids AT rogerkbutlin thechemicalsignaturesunderlyinghostplantdiscriminationbyaphids AT davidphopkins chemicalsignaturesunderlyinghostplantdiscriminationbyaphids AT duncandcameron chemicalsignaturesunderlyinghostplantdiscriminationbyaphids AT rogerkbutlin chemicalsignaturesunderlyinghostplantdiscriminationbyaphids |
_version_ |
1718394059912904704 |