Quantitative disease risk scores from EHR with applications to clinical risk stratification and genetic studies
Abstract Labeling clinical data from electronic health records (EHR) in health systems requires extensive knowledge of human expert, and painstaking review by clinicians. Furthermore, existing phenotyping algorithms are not uniformly applied across large datasets and can suffer from inconsistencies...
Guardado en:
Autores principales: | Danqing Xu, Chen Wang, Atlas Khan, Ning Shang, Zihuai He, Adam Gordon, Iftikhar J. Kullo, Shawn Murphy, Yizhao Ni, Wei-Qi Wei, Ali Gharavi, Krzysztof Kiryluk, Chunhua Weng, Iuliana Ionita-Laza |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bd5ab1833d77497f9aa19329c049a17d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A semi-supervised approach for predicting cell-type specific functional consequences of non-coding variation using MPRAs
por: Zihuai He, et al.
Publicado: (2018) -
A genome-wide scan statistic framework for whole-genome sequence data analysis
por: Zihuai He, et al.
Publicado: (2019) -
Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
por: Itziar de Rojas, et al.
Publicado: (2021) -
A comprehensive risk score for effective risk stratification and screening of nasopharyngeal carcinoma
por: Xiang Zhou, et al.
Publicado: (2021) -
Insights for Stratification of Risk in Brugada Syndrome
por: Daniel García Iglesias, et al.
Publicado: (2019)