Negative interactions determine Clostridioides difficile growth in synthetic human gut communities

Abstract Understanding the principles of colonization resistance of the gut microbiome to the pathogen Clostridioides difficile will enable the design of defined bacterial therapeutics. We investigate the ecological principles of community resistance to C. difficile using a synthetic human gut micro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Susan Hromada, Yili Qian, Tyler B Jacobson, Ryan L Clark, Lauren Watson, Nasia Safdar, Daniel Amador‐Noguez, Ophelia S Venturelli
Formato: article
Lenguaje:EN
Publicado: Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/bd5ffbd93c85490aaac50f95aedc4ea4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:bd5ffbd93c85490aaac50f95aedc4ea4
record_format dspace
spelling oai:doaj.org-article:bd5ffbd93c85490aaac50f95aedc4ea42021-11-11T11:30:48ZNegative interactions determine Clostridioides difficile growth in synthetic human gut communities1744-429210.15252/msb.202110355https://doaj.org/article/bd5ffbd93c85490aaac50f95aedc4ea42021-10-01T00:00:00Zhttps://doi.org/10.15252/msb.202110355https://doaj.org/toc/1744-4292Abstract Understanding the principles of colonization resistance of the gut microbiome to the pathogen Clostridioides difficile will enable the design of defined bacterial therapeutics. We investigate the ecological principles of community resistance to C. difficile using a synthetic human gut microbiome. Using a dynamic computational model, we demonstrate that C. difficile receives the largest number and magnitude of incoming negative interactions. Our results show that C. difficile is in a unique class of species that display a strong negative dependence between growth and species richness. We identify molecular mechanisms of inhibition including acidification of the environment and competition over resources. We demonstrate that Clostridium hiranonis strongly inhibits C. difficile partially via resource competition. Increasing the initial density of C. difficile can increase its abundance in the assembled community, but community context determines the maximum achievable C. difficile abundance. Our work suggests that the C. difficile inhibitory potential of defined bacterial therapeutics can be optimized by designing communities featuring a combination of mechanisms including species richness, environment acidification, and resource competition.Susan HromadaYili QianTyler B JacobsonRyan L ClarkLauren WatsonNasia SafdarDaniel Amador‐NoguezOphelia S VenturelliWileyarticleClostridioides difficilecomputational modelingecological interactionspathogen invasionsystems biologyBiology (General)QH301-705.5Medicine (General)R5-920ENMolecular Systems Biology, Vol 17, Iss 10, Pp n/a-n/a (2021)
institution DOAJ
collection DOAJ
language EN
topic Clostridioides difficile
computational modeling
ecological interactions
pathogen invasion
systems biology
Biology (General)
QH301-705.5
Medicine (General)
R5-920
spellingShingle Clostridioides difficile
computational modeling
ecological interactions
pathogen invasion
systems biology
Biology (General)
QH301-705.5
Medicine (General)
R5-920
Susan Hromada
Yili Qian
Tyler B Jacobson
Ryan L Clark
Lauren Watson
Nasia Safdar
Daniel Amador‐Noguez
Ophelia S Venturelli
Negative interactions determine Clostridioides difficile growth in synthetic human gut communities
description Abstract Understanding the principles of colonization resistance of the gut microbiome to the pathogen Clostridioides difficile will enable the design of defined bacterial therapeutics. We investigate the ecological principles of community resistance to C. difficile using a synthetic human gut microbiome. Using a dynamic computational model, we demonstrate that C. difficile receives the largest number and magnitude of incoming negative interactions. Our results show that C. difficile is in a unique class of species that display a strong negative dependence between growth and species richness. We identify molecular mechanisms of inhibition including acidification of the environment and competition over resources. We demonstrate that Clostridium hiranonis strongly inhibits C. difficile partially via resource competition. Increasing the initial density of C. difficile can increase its abundance in the assembled community, but community context determines the maximum achievable C. difficile abundance. Our work suggests that the C. difficile inhibitory potential of defined bacterial therapeutics can be optimized by designing communities featuring a combination of mechanisms including species richness, environment acidification, and resource competition.
format article
author Susan Hromada
Yili Qian
Tyler B Jacobson
Ryan L Clark
Lauren Watson
Nasia Safdar
Daniel Amador‐Noguez
Ophelia S Venturelli
author_facet Susan Hromada
Yili Qian
Tyler B Jacobson
Ryan L Clark
Lauren Watson
Nasia Safdar
Daniel Amador‐Noguez
Ophelia S Venturelli
author_sort Susan Hromada
title Negative interactions determine Clostridioides difficile growth in synthetic human gut communities
title_short Negative interactions determine Clostridioides difficile growth in synthetic human gut communities
title_full Negative interactions determine Clostridioides difficile growth in synthetic human gut communities
title_fullStr Negative interactions determine Clostridioides difficile growth in synthetic human gut communities
title_full_unstemmed Negative interactions determine Clostridioides difficile growth in synthetic human gut communities
title_sort negative interactions determine clostridioides difficile growth in synthetic human gut communities
publisher Wiley
publishDate 2021
url https://doaj.org/article/bd5ffbd93c85490aaac50f95aedc4ea4
work_keys_str_mv AT susanhromada negativeinteractionsdetermineclostridioidesdifficilegrowthinsynthetichumangutcommunities
AT yiliqian negativeinteractionsdetermineclostridioidesdifficilegrowthinsynthetichumangutcommunities
AT tylerbjacobson negativeinteractionsdetermineclostridioidesdifficilegrowthinsynthetichumangutcommunities
AT ryanlclark negativeinteractionsdetermineclostridioidesdifficilegrowthinsynthetichumangutcommunities
AT laurenwatson negativeinteractionsdetermineclostridioidesdifficilegrowthinsynthetichumangutcommunities
AT nasiasafdar negativeinteractionsdetermineclostridioidesdifficilegrowthinsynthetichumangutcommunities
AT danielamadornoguez negativeinteractionsdetermineclostridioidesdifficilegrowthinsynthetichumangutcommunities
AT opheliasventurelli negativeinteractionsdetermineclostridioidesdifficilegrowthinsynthetichumangutcommunities
_version_ 1718439162684637184