Investigation of the thermal tolerance of silicon-based lateral spin valves
Abstract Improvement in the thermal tolerance of Si-based spin devices is realized by employing thermally stable nonmagnetic (NM) electrodes. For Au/Ta/Al electrodes, intermixing between Al atoms and Au atoms occurs at approximately 300 °C, resulting in the formation of a Au/Si interface. The Au–Si...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bd73c5c612c549a08cdb30909f2094f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Improvement in the thermal tolerance of Si-based spin devices is realized by employing thermally stable nonmagnetic (NM) electrodes. For Au/Ta/Al electrodes, intermixing between Al atoms and Au atoms occurs at approximately 300 °C, resulting in the formation of a Au/Si interface. The Au–Si liquid phase is formed and diffuses mainly along an in-plane direction between the Si and AlN capping layers, eventually breaking the MgO layer of the ferromagnetic (FM) metal/MgO electrodes, which is located 7 µm away from the NM electrodes. By changing the layer structure of the NM electrode from Au/Ta/Al to Au/Ta, the thermal tolerance is clearly enhanced. Clear spin transport signals are obtained even after annealing at 400 °C. To investigate the effects of Mg insertion in FM electrodes on thermal tolerance, we also compare the thermal tolerance among Fe/Co/MgO, Fe/Co/Mg/MgO and Fe/Co/MgO/Mg contacts. Although a highly efficient spin injection has been reported by insertion of a thin Mg layer below or above the MgO layer, these thermal tolerances decrease obviously. |
---|