Exploration of machine algorithms based on deep learning model and feature extraction
The study expects to solve the problems of insufficient labeling, high input dimension, and inconsistent task input distribution in traditional lifelong machine learning. A new deep learning model is proposed by combining feature representation with a deep learning algorithm. First, based on the the...
Enregistré dans:
Auteur principal: | Yufeng Qian |
---|---|
Format: | article |
Langue: | EN |
Publié: |
AIMS Press
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bd7b01391f984eda8f52fa79835a1a53 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Deep learning and radiomics analysis for prediction of placenta invasion based on T2WI
par: Qian ShaoYutao Wang, et autres
Publié: (2021) -
A hybrid deep learning model for breast cancer diagnosis based on transfer learning and pulse-coupled neural networks
par: Meteb M. Altaf
Publié: (2021) -
The world of ribonucleases from pseudomonads: a short trip through the main features and singularities
par: Patrícia Apura, et autres
Publié: (2021) -
Machine learning approaches to predict the Plant-associated phenotype of Xanthomonas strains
par: Dennie te Molder, et autres
Publié: (2021) -
TYLER, a fast method that accurately predicts cyclin-dependent proteins by using computation-based motifs and sequence-derived features
par: Jian Zhang, et autres
Publié: (2021)