Gcn5p and Ubp8p Affect Protein Ubiquitylation and Cell Proliferation by Altering the Fermentative/Respiratory Flux Balance in <italic toggle="yes">Saccharomyces cerevisiae</italic>
ABSTRACT Protein ubiquitylation regulates not only endocellular trafficking and proteasomal degradation but also the catalytic activity of enzymes. In Saccharomyces cerevisiae, we analyzed the composition of the ubiquitylated proteomes in strains lacking acetyltransferase Gcn5p, Ub-protease Ubp8p, o...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bd81e473ee064372a1520e4593a9d3b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bd81e473ee064372a1520e4593a9d3b9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bd81e473ee064372a1520e4593a9d3b92021-11-15T15:56:44ZGcn5p and Ubp8p Affect Protein Ubiquitylation and Cell Proliferation by Altering the Fermentative/Respiratory Flux Balance in <italic toggle="yes">Saccharomyces cerevisiae</italic>10.1128/mBio.01504-202150-7511https://doaj.org/article/bd81e473ee064372a1520e4593a9d3b92020-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01504-20https://doaj.org/toc/2150-7511ABSTRACT Protein ubiquitylation regulates not only endocellular trafficking and proteasomal degradation but also the catalytic activity of enzymes. In Saccharomyces cerevisiae, we analyzed the composition of the ubiquitylated proteomes in strains lacking acetyltransferase Gcn5p, Ub-protease Ubp8p, or both to understand their involvement in the regulation of protein ubiquitylation. We analyzed His6Ub proteins with a proteomic approach coupling micro-liquid chromatography and tandem mass spectrometry (μLC-MS/MS) in gcn5Δ, ubp8Δ and ubp8Δ gcn5Δ strains. The Ub-proteome altered in the absence of Gcn5p, Ubp8p, or both was characterized, showing that 43% of the proteins was shared in all strains, suggesting their functional relationship. Remarkably, all major glycolytic enzymes showed increased ubiquitylation. Phosphofructokinase 1, the key enzyme of glycolytic flux, showed a higher and altered pattern of ubiquitylation in gcn5Δ and ubp8Δ strains. Severe defects of growth in poor sugar and altered glucose consumption confirmed a direct role of Gcn5p and Ubp8p in affecting the REDOX balance of the cell. IMPORTANCE We propose a study showing a novel role of Gcn5p and Ubp8p in the process of ubiquitylation of the yeast proteome which includes main glycolytic enzymes. Interestingly, in the absence of Gcn5p and Ubp8p glucose consumption and redox balance were altered in yeast. We believe that these results and the role of Gcn5p and Ubp8p in sugar metabolism might open new perspectives of research leading to novel protocols for counteracting the enhanced glycolysis in tumors.Antonella De PalmaGiulia FanelliElisabetta CretellaVeronica De LucaRaffaele Antonio PalladinoValentina PanzeriValentina RoffiaMichele SaliolaPierluigi MauriPatrizia FileticiAmerican Society for MicrobiologyarticleubiquitylationGcn5pUbp8pglycolytic fluxsugar utilizationMicrobiologyQR1-502ENmBio, Vol 11, Iss 4 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ubiquitylation Gcn5p Ubp8p glycolytic flux sugar utilization Microbiology QR1-502 |
spellingShingle |
ubiquitylation Gcn5p Ubp8p glycolytic flux sugar utilization Microbiology QR1-502 Antonella De Palma Giulia Fanelli Elisabetta Cretella Veronica De Luca Raffaele Antonio Palladino Valentina Panzeri Valentina Roffia Michele Saliola Pierluigi Mauri Patrizia Filetici Gcn5p and Ubp8p Affect Protein Ubiquitylation and Cell Proliferation by Altering the Fermentative/Respiratory Flux Balance in <italic toggle="yes">Saccharomyces cerevisiae</italic> |
description |
ABSTRACT Protein ubiquitylation regulates not only endocellular trafficking and proteasomal degradation but also the catalytic activity of enzymes. In Saccharomyces cerevisiae, we analyzed the composition of the ubiquitylated proteomes in strains lacking acetyltransferase Gcn5p, Ub-protease Ubp8p, or both to understand their involvement in the regulation of protein ubiquitylation. We analyzed His6Ub proteins with a proteomic approach coupling micro-liquid chromatography and tandem mass spectrometry (μLC-MS/MS) in gcn5Δ, ubp8Δ and ubp8Δ gcn5Δ strains. The Ub-proteome altered in the absence of Gcn5p, Ubp8p, or both was characterized, showing that 43% of the proteins was shared in all strains, suggesting their functional relationship. Remarkably, all major glycolytic enzymes showed increased ubiquitylation. Phosphofructokinase 1, the key enzyme of glycolytic flux, showed a higher and altered pattern of ubiquitylation in gcn5Δ and ubp8Δ strains. Severe defects of growth in poor sugar and altered glucose consumption confirmed a direct role of Gcn5p and Ubp8p in affecting the REDOX balance of the cell. IMPORTANCE We propose a study showing a novel role of Gcn5p and Ubp8p in the process of ubiquitylation of the yeast proteome which includes main glycolytic enzymes. Interestingly, in the absence of Gcn5p and Ubp8p glucose consumption and redox balance were altered in yeast. We believe that these results and the role of Gcn5p and Ubp8p in sugar metabolism might open new perspectives of research leading to novel protocols for counteracting the enhanced glycolysis in tumors. |
format |
article |
author |
Antonella De Palma Giulia Fanelli Elisabetta Cretella Veronica De Luca Raffaele Antonio Palladino Valentina Panzeri Valentina Roffia Michele Saliola Pierluigi Mauri Patrizia Filetici |
author_facet |
Antonella De Palma Giulia Fanelli Elisabetta Cretella Veronica De Luca Raffaele Antonio Palladino Valentina Panzeri Valentina Roffia Michele Saliola Pierluigi Mauri Patrizia Filetici |
author_sort |
Antonella De Palma |
title |
Gcn5p and Ubp8p Affect Protein Ubiquitylation and Cell Proliferation by Altering the Fermentative/Respiratory Flux Balance in <italic toggle="yes">Saccharomyces cerevisiae</italic> |
title_short |
Gcn5p and Ubp8p Affect Protein Ubiquitylation and Cell Proliferation by Altering the Fermentative/Respiratory Flux Balance in <italic toggle="yes">Saccharomyces cerevisiae</italic> |
title_full |
Gcn5p and Ubp8p Affect Protein Ubiquitylation and Cell Proliferation by Altering the Fermentative/Respiratory Flux Balance in <italic toggle="yes">Saccharomyces cerevisiae</italic> |
title_fullStr |
Gcn5p and Ubp8p Affect Protein Ubiquitylation and Cell Proliferation by Altering the Fermentative/Respiratory Flux Balance in <italic toggle="yes">Saccharomyces cerevisiae</italic> |
title_full_unstemmed |
Gcn5p and Ubp8p Affect Protein Ubiquitylation and Cell Proliferation by Altering the Fermentative/Respiratory Flux Balance in <italic toggle="yes">Saccharomyces cerevisiae</italic> |
title_sort |
gcn5p and ubp8p affect protein ubiquitylation and cell proliferation by altering the fermentative/respiratory flux balance in <italic toggle="yes">saccharomyces cerevisiae</italic> |
publisher |
American Society for Microbiology |
publishDate |
2020 |
url |
https://doaj.org/article/bd81e473ee064372a1520e4593a9d3b9 |
work_keys_str_mv |
AT antonelladepalma gcn5pandubp8paffectproteinubiquitylationandcellproliferationbyalteringthefermentativerespiratoryfluxbalanceinitalictoggleyessaccharomycescerevisiaeitalic AT giuliafanelli gcn5pandubp8paffectproteinubiquitylationandcellproliferationbyalteringthefermentativerespiratoryfluxbalanceinitalictoggleyessaccharomycescerevisiaeitalic AT elisabettacretella gcn5pandubp8paffectproteinubiquitylationandcellproliferationbyalteringthefermentativerespiratoryfluxbalanceinitalictoggleyessaccharomycescerevisiaeitalic AT veronicadeluca gcn5pandubp8paffectproteinubiquitylationandcellproliferationbyalteringthefermentativerespiratoryfluxbalanceinitalictoggleyessaccharomycescerevisiaeitalic AT raffaeleantoniopalladino gcn5pandubp8paffectproteinubiquitylationandcellproliferationbyalteringthefermentativerespiratoryfluxbalanceinitalictoggleyessaccharomycescerevisiaeitalic AT valentinapanzeri gcn5pandubp8paffectproteinubiquitylationandcellproliferationbyalteringthefermentativerespiratoryfluxbalanceinitalictoggleyessaccharomycescerevisiaeitalic AT valentinaroffia gcn5pandubp8paffectproteinubiquitylationandcellproliferationbyalteringthefermentativerespiratoryfluxbalanceinitalictoggleyessaccharomycescerevisiaeitalic AT michelesaliola gcn5pandubp8paffectproteinubiquitylationandcellproliferationbyalteringthefermentativerespiratoryfluxbalanceinitalictoggleyessaccharomycescerevisiaeitalic AT pierluigimauri gcn5pandubp8paffectproteinubiquitylationandcellproliferationbyalteringthefermentativerespiratoryfluxbalanceinitalictoggleyessaccharomycescerevisiaeitalic AT patriziafiletici gcn5pandubp8paffectproteinubiquitylationandcellproliferationbyalteringthefermentativerespiratoryfluxbalanceinitalictoggleyessaccharomycescerevisiaeitalic |
_version_ |
1718427116380356608 |