Class-Aware Domain Adaptation for Coastal Land Cover Mapping Using Optical Remote Sensing Imagery
Coastal land cover mapping is a significant yet challenging pixel-level segmentation task. Domain shift between optical remote sensing imagery will give rise to remarkable performance degradation for deep supervised methods. Besides, the ground objects characterized with interclass variance and clas...
Guardado en:
Autores principales: | Jifa Chen, Gang Chen, Bo Fang, Jingjing Wang, Lizhe Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bda2a25762ef4368b993766f280ea435 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Simulation Experiment on In-Situ Observation of Short-Wavelength Scale Dynamic Processes and Potential Applications to Wide-Swath Interferometric Altimetry Validation
por: Chen Wang, et al.
Publicado: (2021) -
Very Rapid Forest Cover Change in Sichuan Province, China: 40 Years of Change Using Images From Declassified Spy Satellites and Landsat
por: Dan-Xia Song, et al.
Publicado: (2021) -
An Adaptive Change Threshold Selection Method Based on Land Cover Posterior Probability and Spatial Neighborhood Information
por: Huaqiao Xing, et al.
Publicado: (2021) -
Soil Moisture Active/Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration Revisit: Approach and Performance
por: Jinzheng Peng, et al.
Publicado: (2021) -
Multireceiver SAS Imagery Based on Monostatic Conversion
por: Xuebo Zhang, et al.
Publicado: (2021)