Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data
In many machine learning applications, one uses pre-trained neural networks, having limited access to training and test data. Martin et al. show how to predict trends in the quality of such neural networks without access to this information, relevant for reproducibility, diagnostics, and validation.
Guardado en:
Autores principales: | Charles H. Martin, Tongsu (Serena) Peng, Michael W. Mahoney |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bdc9afbd811d47888c4645cf78e0b595 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Knowledge management in the construction industry: state of the art and trends in research
por: Castro,A. L, et al.
Publicado: (2012) -
State of the art methods to post-process mechanical test data to characterize the hot deformation behavior of metals
por: Shahin Khoddam, et al.
Publicado: (2021) -
Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends
por: Sohail MF, et al.
Publicado: (2018) -
State-of-the-art Italian dependency parsers based on neural and ensemble systems
por: Oronzo Antonelli, et al.
Publicado: (2019) -
Art paintings accessible to the blind
por: Aksinja Kermauner
Publicado: (2021)