Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data
In many machine learning applications, one uses pre-trained neural networks, having limited access to training and test data. Martin et al. show how to predict trends in the quality of such neural networks without access to this information, relevant for reproducibility, diagnostics, and validation.
Enregistré dans:
Auteurs principaux: | Charles H. Martin, Tongsu (Serena) Peng, Michael W. Mahoney |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/bdc9afbd811d47888c4645cf78e0b595 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Knowledge management in the construction industry: state of the art and trends in research
par: Castro,A. L, et autres
Publié: (2012) -
State of the art methods to post-process mechanical test data to characterize the hot deformation behavior of metals
par: Shahin Khoddam, et autres
Publié: (2021) -
Advancements in the oral delivery of Docetaxel: challenges, current state-of-the-art and future trends
par: Sohail MF, et autres
Publié: (2018) -
State-of-the-art Italian dependency parsers based on neural and ensemble systems
par: Oronzo Antonelli, et autres
Publié: (2019) -
Art paintings accessible to the blind
par: Aksinja Kermauner
Publié: (2021)