XMRV induces cell migration, cytokine expression and tumor angiogenesis: are 22Rv1 cells a suitable prostate cancer model?
22Rv1 is a common prostate cancer cell line used in xenograft mouse experiments as well as in vitro cell culture assays to study aspects of prostate cancer tumorigenesis. Recently, this cell line was shown to harbor multiple copies of a gammaretrovirus, called XMRV, integrated in its genome. While t...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bdce1bef89e747cbba357f676302486e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bdce1bef89e747cbba357f676302486e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bdce1bef89e747cbba357f676302486e2021-11-18T07:10:32ZXMRV induces cell migration, cytokine expression and tumor angiogenesis: are 22Rv1 cells a suitable prostate cancer model?1932-620310.1371/journal.pone.0042321https://doaj.org/article/bdce1bef89e747cbba357f676302486e2012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22848758/?tool=EBIhttps://doaj.org/toc/1932-620322Rv1 is a common prostate cancer cell line used in xenograft mouse experiments as well as in vitro cell culture assays to study aspects of prostate cancer tumorigenesis. Recently, this cell line was shown to harbor multiple copies of a gammaretrovirus, called XMRV, integrated in its genome. While the original prostate cancer xenograft CWR22 is free of any retrovirus, subsequently generated cell lines 22Rv1 and CWR-R1, carry this virus and additionally shed infectious gammaretroviral particles in their supernatant. Although XMRV most likely was generated by recombination events in cell culture this virus has been demonstrated to infect human cells in vitro and 22Rv1 as well as CWR-R1 cells are now considered biosafety 2 reagents. Here, we demonstrate that 22Rv1 cells with reduced retroviral transcription show reduced tumor angiogenesis and increased necrosis of the primary tumor derived from xenografted cells in scid mice when compared to the parental cell line. The presence of XMRV transcripts significantly increases secretion of osteopontin (OPN), CXCL14, IL13 and TIMP2 in 22Rv1 cells. Furthermore, these data are supported by in vitro cell invasion and differentiation assays. Collectively, our data suggest that the presence of XMRV transcripts at least partially contributes to 22Rv1 characteristics observed in vitro and in vivo with regard to migration, invasion and tumor angiogenesis. We propose that data received with 22Rv1 cells or equivalent cells carrying xenotropic gammaretroviruses should be carefully controlled including other prostate cancer cell lines tested for viral sequences.Kristin StielerUdo SchumacherAndrea Kristina HorstNicole FischerPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 7, p e42321 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Kristin Stieler Udo Schumacher Andrea Kristina Horst Nicole Fischer XMRV induces cell migration, cytokine expression and tumor angiogenesis: are 22Rv1 cells a suitable prostate cancer model? |
description |
22Rv1 is a common prostate cancer cell line used in xenograft mouse experiments as well as in vitro cell culture assays to study aspects of prostate cancer tumorigenesis. Recently, this cell line was shown to harbor multiple copies of a gammaretrovirus, called XMRV, integrated in its genome. While the original prostate cancer xenograft CWR22 is free of any retrovirus, subsequently generated cell lines 22Rv1 and CWR-R1, carry this virus and additionally shed infectious gammaretroviral particles in their supernatant. Although XMRV most likely was generated by recombination events in cell culture this virus has been demonstrated to infect human cells in vitro and 22Rv1 as well as CWR-R1 cells are now considered biosafety 2 reagents. Here, we demonstrate that 22Rv1 cells with reduced retroviral transcription show reduced tumor angiogenesis and increased necrosis of the primary tumor derived from xenografted cells in scid mice when compared to the parental cell line. The presence of XMRV transcripts significantly increases secretion of osteopontin (OPN), CXCL14, IL13 and TIMP2 in 22Rv1 cells. Furthermore, these data are supported by in vitro cell invasion and differentiation assays. Collectively, our data suggest that the presence of XMRV transcripts at least partially contributes to 22Rv1 characteristics observed in vitro and in vivo with regard to migration, invasion and tumor angiogenesis. We propose that data received with 22Rv1 cells or equivalent cells carrying xenotropic gammaretroviruses should be carefully controlled including other prostate cancer cell lines tested for viral sequences. |
format |
article |
author |
Kristin Stieler Udo Schumacher Andrea Kristina Horst Nicole Fischer |
author_facet |
Kristin Stieler Udo Schumacher Andrea Kristina Horst Nicole Fischer |
author_sort |
Kristin Stieler |
title |
XMRV induces cell migration, cytokine expression and tumor angiogenesis: are 22Rv1 cells a suitable prostate cancer model? |
title_short |
XMRV induces cell migration, cytokine expression and tumor angiogenesis: are 22Rv1 cells a suitable prostate cancer model? |
title_full |
XMRV induces cell migration, cytokine expression and tumor angiogenesis: are 22Rv1 cells a suitable prostate cancer model? |
title_fullStr |
XMRV induces cell migration, cytokine expression and tumor angiogenesis: are 22Rv1 cells a suitable prostate cancer model? |
title_full_unstemmed |
XMRV induces cell migration, cytokine expression and tumor angiogenesis: are 22Rv1 cells a suitable prostate cancer model? |
title_sort |
xmrv induces cell migration, cytokine expression and tumor angiogenesis: are 22rv1 cells a suitable prostate cancer model? |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/bdce1bef89e747cbba357f676302486e |
work_keys_str_mv |
AT kristinstieler xmrvinducescellmigrationcytokineexpressionandtumorangiogenesisare22rv1cellsasuitableprostatecancermodel AT udoschumacher xmrvinducescellmigrationcytokineexpressionandtumorangiogenesisare22rv1cellsasuitableprostatecancermodel AT andreakristinahorst xmrvinducescellmigrationcytokineexpressionandtumorangiogenesisare22rv1cellsasuitableprostatecancermodel AT nicolefischer xmrvinducescellmigrationcytokineexpressionandtumorangiogenesisare22rv1cellsasuitableprostatecancermodel |
_version_ |
1718423878105038848 |