Sampling requirements and approaches to detect ecosystem shifts
Environmental monitoring is a key component of understanding and managing ecosystems. Given that most monitoring efforts are still expensive and time-consuming, it is essential that monitoring programs are designed to be efficient and effective. In many situations, the expensive part of monitoring i...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bde2092ddfa44929922817a97b098924 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:bde2092ddfa44929922817a97b098924 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:bde2092ddfa44929922817a97b0989242021-12-01T04:34:55ZSampling requirements and approaches to detect ecosystem shifts1470-160X10.1016/j.ecolind.2020.107096https://doaj.org/article/bde2092ddfa44929922817a97b0989242021-02-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X20310359https://doaj.org/toc/1470-160XEnvironmental monitoring is a key component of understanding and managing ecosystems. Given that most monitoring efforts are still expensive and time-consuming, it is essential that monitoring programs are designed to be efficient and effective. In many situations, the expensive part of monitoring is not sample collection, but instead sample processing, which leads to only a subset of the samples being processed. For example, sediment or ice cores can be quickly obtained in the field, but they require weeks or months of processing in a laboratory setting. Standard sub-sampling approaches often involve equally-spaced sampling on depth. We use simulations to show how many samples, and which types of sampling approaches, are the most effective in detecting ecosystem change. We test these ideas with a case study of Cladocera community assemblage indicators reconstructed from a sediment core. We demonstrate that standard approaches to sample processing are less efficient than an iterative approach. For our case study, using an optimal sampling approach would have resulted in savings of 195 person–hours—thousands of dollars in labor costs. We also show that, compared with these standard approaches, fewer samples are typically needed to achieve high statistical power. We explain how our approach can be applied to monitoring programs that rely on video records, eDNA, remote sensing, and other common tools that allow re-sampling.Rosalie BruelEaston R. WhiteElsevierarticleTime seriesChangepointMonitoringOptimal samplingCladoceraPaleoecologyEcologyQH540-549.5ENEcological Indicators, Vol 121, Iss , Pp 107096- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Time series Changepoint Monitoring Optimal sampling Cladocera Paleoecology Ecology QH540-549.5 |
spellingShingle |
Time series Changepoint Monitoring Optimal sampling Cladocera Paleoecology Ecology QH540-549.5 Rosalie Bruel Easton R. White Sampling requirements and approaches to detect ecosystem shifts |
description |
Environmental monitoring is a key component of understanding and managing ecosystems. Given that most monitoring efforts are still expensive and time-consuming, it is essential that monitoring programs are designed to be efficient and effective. In many situations, the expensive part of monitoring is not sample collection, but instead sample processing, which leads to only a subset of the samples being processed. For example, sediment or ice cores can be quickly obtained in the field, but they require weeks or months of processing in a laboratory setting. Standard sub-sampling approaches often involve equally-spaced sampling on depth. We use simulations to show how many samples, and which types of sampling approaches, are the most effective in detecting ecosystem change. We test these ideas with a case study of Cladocera community assemblage indicators reconstructed from a sediment core. We demonstrate that standard approaches to sample processing are less efficient than an iterative approach. For our case study, using an optimal sampling approach would have resulted in savings of 195 person–hours—thousands of dollars in labor costs. We also show that, compared with these standard approaches, fewer samples are typically needed to achieve high statistical power. We explain how our approach can be applied to monitoring programs that rely on video records, eDNA, remote sensing, and other common tools that allow re-sampling. |
format |
article |
author |
Rosalie Bruel Easton R. White |
author_facet |
Rosalie Bruel Easton R. White |
author_sort |
Rosalie Bruel |
title |
Sampling requirements and approaches to detect ecosystem shifts |
title_short |
Sampling requirements and approaches to detect ecosystem shifts |
title_full |
Sampling requirements and approaches to detect ecosystem shifts |
title_fullStr |
Sampling requirements and approaches to detect ecosystem shifts |
title_full_unstemmed |
Sampling requirements and approaches to detect ecosystem shifts |
title_sort |
sampling requirements and approaches to detect ecosystem shifts |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/bde2092ddfa44929922817a97b098924 |
work_keys_str_mv |
AT rosaliebruel samplingrequirementsandapproachestodetectecosystemshifts AT eastonrwhite samplingrequirementsandapproachestodetectecosystemshifts |
_version_ |
1718405866762272768 |