Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo

Xiumei Tian,1,* Fanwen Yang,1,* Chuan Yang,2 Ye Peng,1 Dihu Chen,3 Jixiang Zhu,1 Fupo He,1 Li Li,2 Xiaoming Chen11Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China; 2State Key Laboratory of Oncology in South China...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tian XM, Yang FW, Yang C, Peng Y, Chen DH, Zhu JX, He FP, Li L, Chen XM
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://doaj.org/article/be05cbc1d719435e896c2aabf5d6158d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:be05cbc1d719435e896c2aabf5d6158d
record_format dspace
spelling oai:doaj.org-article:be05cbc1d719435e896c2aabf5d6158d2021-12-02T02:04:24ZToxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo1178-2013https://doaj.org/article/be05cbc1d719435e896c2aabf5d6158d2014-08-01T00:00:00Zhttp://www.dovepress.com/toxicity-evaluation-of-gd2o3sio2-nanoparticles-prepared-by-laser-ablat-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013 Xiumei Tian,1,* Fanwen Yang,1,* Chuan Yang,2 Ye Peng,1 Dihu Chen,3 Jixiang Zhu,1 Fupo He,1 Li Li,2 Xiaoming Chen11Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China; 2State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People’s Republic of China; 3State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China*These authors contributed equally to this workAbstract: Poor toxicity characterization is one obstacle to the clinical deployment of Gd2O3@SiO2 core-shell nanoparticles (Gd-NPs) for use as magnetic resonance (MR) imaging contrast agents. To date, there is no systematic toxicity data available for Gd-NPs prepared by laser ablation in liquid. In this article, we systematically studied the Gd-NPs’ cytotoxicity, apoptosis in vitro, immunotoxicity, blood circulation half-life, biodistribution and excretion in vivo, as well as pharmacodynamics. The results show the toxicity, and in vivo MR data show that these NPs are a good contrast agent for preclinical applications. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd-NPs and Gd in a DTPA (diethylenetriaminepentaacetic acid) chelator. Biodistribution data reveal a greater accumulation of the Gd-NPs in the liver, spleen, lung, and tumor than in the kidney, heart, and brain. Approximately 50% of the Gd is excreted via the hepatobiliary system within 4 weeks. Furthermore, dynamic contrast-enhanced T1-weighted MR images of xenografted murine tumors were obtained after intravenous administration of the Gd-NPs. Collectively, the single step preparation of Gd-NPs by laser ablation in liquid produces particles with satisfactory cytotoxicity, minimal immunotoxicity, and efficient MR contrast. This may lead to their utility as molecular imaging contrast agents in MR imaging for cancer diagnosis.Keywords: gadolinium, molecular imaging, cytotoxicity, immunotoxicityTian XMYang FWYang CPeng YChen DHZhu JXHe FPLi LChen XMDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2014, Iss Issue 1, Pp 4043-4053 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Tian XM
Yang FW
Yang C
Peng Y
Chen DH
Zhu JX
He FP
Li L
Chen XM
Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo
description Xiumei Tian,1,* Fanwen Yang,1,* Chuan Yang,2 Ye Peng,1 Dihu Chen,3 Jixiang Zhu,1 Fupo He,1 Li Li,2 Xiaoming Chen11Department of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China; 2State Key Laboratory of Oncology in South China, Imaging Diagnosis and Interventional Center, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, People’s Republic of China; 3State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong Province, People’s Republic of China*These authors contributed equally to this workAbstract: Poor toxicity characterization is one obstacle to the clinical deployment of Gd2O3@SiO2 core-shell nanoparticles (Gd-NPs) for use as magnetic resonance (MR) imaging contrast agents. To date, there is no systematic toxicity data available for Gd-NPs prepared by laser ablation in liquid. In this article, we systematically studied the Gd-NPs’ cytotoxicity, apoptosis in vitro, immunotoxicity, blood circulation half-life, biodistribution and excretion in vivo, as well as pharmacodynamics. The results show the toxicity, and in vivo MR data show that these NPs are a good contrast agent for preclinical applications. No significant differences were found in cell viability, apoptosis, and immunotoxicity between our Gd-NPs and Gd in a DTPA (diethylenetriaminepentaacetic acid) chelator. Biodistribution data reveal a greater accumulation of the Gd-NPs in the liver, spleen, lung, and tumor than in the kidney, heart, and brain. Approximately 50% of the Gd is excreted via the hepatobiliary system within 4 weeks. Furthermore, dynamic contrast-enhanced T1-weighted MR images of xenografted murine tumors were obtained after intravenous administration of the Gd-NPs. Collectively, the single step preparation of Gd-NPs by laser ablation in liquid produces particles with satisfactory cytotoxicity, minimal immunotoxicity, and efficient MR contrast. This may lead to their utility as molecular imaging contrast agents in MR imaging for cancer diagnosis.Keywords: gadolinium, molecular imaging, cytotoxicity, immunotoxicity
format article
author Tian XM
Yang FW
Yang C
Peng Y
Chen DH
Zhu JX
He FP
Li L
Chen XM
author_facet Tian XM
Yang FW
Yang C
Peng Y
Chen DH
Zhu JX
He FP
Li L
Chen XM
author_sort Tian XM
title Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo
title_short Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo
title_full Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo
title_fullStr Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo
title_full_unstemmed Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo
title_sort toxicity evaluation of gd2o3@sio2 nanoparticles prepared by laser ablation in liquid as mri contrast agents in vivo
publisher Dove Medical Press
publishDate 2014
url https://doaj.org/article/be05cbc1d719435e896c2aabf5d6158d
work_keys_str_mv AT tianxm toxicityevaluationofgd2o3sio2nanoparticlespreparedbylaserablationinliquidasmricontrastagentsinvivo
AT yangfw toxicityevaluationofgd2o3sio2nanoparticlespreparedbylaserablationinliquidasmricontrastagentsinvivo
AT yangc toxicityevaluationofgd2o3sio2nanoparticlespreparedbylaserablationinliquidasmricontrastagentsinvivo
AT pengy toxicityevaluationofgd2o3sio2nanoparticlespreparedbylaserablationinliquidasmricontrastagentsinvivo
AT chendh toxicityevaluationofgd2o3sio2nanoparticlespreparedbylaserablationinliquidasmricontrastagentsinvivo
AT zhujx toxicityevaluationofgd2o3sio2nanoparticlespreparedbylaserablationinliquidasmricontrastagentsinvivo
AT hefp toxicityevaluationofgd2o3sio2nanoparticlespreparedbylaserablationinliquidasmricontrastagentsinvivo
AT lil toxicityevaluationofgd2o3sio2nanoparticlespreparedbylaserablationinliquidasmricontrastagentsinvivo
AT chenxm toxicityevaluationofgd2o3sio2nanoparticlespreparedbylaserablationinliquidasmricontrastagentsinvivo
_version_ 1718402731338629120