Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation
In recent years, several powerful machine learning (ML) algorithms have been developed for image classification, especially those based on ensemble learning (EL). In particular, Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM) methods have attracted researchers’ att...
Guardado en:
Autores principales: | Hamid Jafarzadeh, Masoud Mahdianpari, Eric Gill, Fariba Mohammadimanesh, Saeid Homayouni |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/be0aeffa2aae4a19b80dce589367d7a7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A New Convolutional Kernel Classifier for Hyperspectral Image Classification
por: Mohsen Ansari, et al.
Publicado: (2021) -
Blind Fusion of Hyperspectral Multispectral Images Based on Matrix Factorization
por: Jian Long, et al.
Publicado: (2021) -
Monitoring and Analyzing Yield Gap in Africa through Soil Attribute Best Management Using Remote Sensing Approaches: A Review
por: Keltoum Khechba, et al.
Publicado: (2021) -
Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
por: Itiya Aneece, et al.
Publicado: (2021) -
A multispectral 3D-Endoscope for Cholesteatoma Removal
por: Wisotzky Eric L., et al.
Publicado: (2020)