A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells

Guanhua Li,1,2 Zuojun Hu,1 Henghui Yin,1 Yunjian Zhang,1 Xueling Huang,1 Shenming Wang,1 Wen Li2 1Department of Vascular and Thyroid Surgery, 2Key Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China Abstract: The application of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Li G, Hu Z, Yin H, Zhang Y, Huang X, Wang S, Li W
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2013
Materias:
Acceso en línea:https://doaj.org/article/be14d62e2bbe4e19b8ac5d48eb8478ec
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:be14d62e2bbe4e19b8ac5d48eb8478ec
record_format dspace
spelling oai:doaj.org-article:be14d62e2bbe4e19b8ac5d48eb8478ec2021-12-02T07:20:24ZA novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells1176-91141178-2013https://doaj.org/article/be14d62e2bbe4e19b8ac5d48eb8478ec2013-03-01T00:00:00Zhttp://www.dovepress.com/a-novel-dendritic-nanocarrier-of-polyamidoamine-polyethylene-glycol-cy-a12595https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Guanhua Li,1,2 Zuojun Hu,1 Henghui Yin,1 Yunjian Zhang,1 Xueling Huang,1 Shenming Wang,1 Wen Li2 1Department of Vascular and Thyroid Surgery, 2Key Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China Abstract: The application of RNA interference techniques is promising in gene therapeutic approaches, especially for cancers. To improve safety and efficiency of small interfering RNA (siRNA) delivery, a triblock dendritic nanocarrier, polyamidoamine-polyethylene glycol-cyclic RGD (PAMAM-PEG-cRGD), was developed and studied as an siRNA vector targeting the human ether-à-go-go-related gene (hERG) in human anaplastic thyroid carcinoma cells. Structure characterization, particle size, zeta potential, and gel retardation assay confirmed that complete triblock components were successfully synthesized with effective binding capacity of siRNA in this triblock nanocarrier. Cytotoxicity data indicated that conjugation of PEG significantly alleviated cytotoxicity when compared with unmodified PAMAM. PAMAM-PEG-cRGD exerted potent siRNA cellular internalization in which transfection efficiency measured by flow cytometry was up to 68% when the charge ratio (N/P ratio) was 3.5. Ligand-receptor affinity together with electrostatic interaction should be involved in the nano-siRNA endocytosis mechanism and we then proved that attachment of cRGD enhanced cellular uptake via RGD-integrin recognition. Gene silencing was evaluated by reverse transcription polymerase chain reaction and PAMAM-PEG-cRGD-siRNA complex downregulated the expression of hERG to 26.3% of the control value. Furthermore, gene knockdown of hERG elicited growth suppression as well as activated apoptosis by means of abolishing vascular endothelial growth factor secretion and triggering caspase-3 cascade in anaplastic thyroid carcinoma cells. Our study demonstrates that this novel triblock polymer, PAMAM-PEG-cRGD, exhibits negligible cytotoxicity, effective transfection, “smart” cancer targeting, and therefore is a promising siRNA nanocarrier. Keywords: small interfering RNA, dendrimer, gene silencing, human ether-à-go-go-related gene, anaplastic thyroid cancerLi GHu ZYin HZhang YHuang XWang SLi WDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2013, Iss default, Pp 1293-1306 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine (General)
R5-920
spellingShingle Medicine (General)
R5-920
Li G
Hu Z
Yin H
Zhang Y
Huang X
Wang S
Li W
A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells
description Guanhua Li,1,2 Zuojun Hu,1 Henghui Yin,1 Yunjian Zhang,1 Xueling Huang,1 Shenming Wang,1 Wen Li2 1Department of Vascular and Thyroid Surgery, 2Key Laboratory of Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China Abstract: The application of RNA interference techniques is promising in gene therapeutic approaches, especially for cancers. To improve safety and efficiency of small interfering RNA (siRNA) delivery, a triblock dendritic nanocarrier, polyamidoamine-polyethylene glycol-cyclic RGD (PAMAM-PEG-cRGD), was developed and studied as an siRNA vector targeting the human ether-à-go-go-related gene (hERG) in human anaplastic thyroid carcinoma cells. Structure characterization, particle size, zeta potential, and gel retardation assay confirmed that complete triblock components were successfully synthesized with effective binding capacity of siRNA in this triblock nanocarrier. Cytotoxicity data indicated that conjugation of PEG significantly alleviated cytotoxicity when compared with unmodified PAMAM. PAMAM-PEG-cRGD exerted potent siRNA cellular internalization in which transfection efficiency measured by flow cytometry was up to 68% when the charge ratio (N/P ratio) was 3.5. Ligand-receptor affinity together with electrostatic interaction should be involved in the nano-siRNA endocytosis mechanism and we then proved that attachment of cRGD enhanced cellular uptake via RGD-integrin recognition. Gene silencing was evaluated by reverse transcription polymerase chain reaction and PAMAM-PEG-cRGD-siRNA complex downregulated the expression of hERG to 26.3% of the control value. Furthermore, gene knockdown of hERG elicited growth suppression as well as activated apoptosis by means of abolishing vascular endothelial growth factor secretion and triggering caspase-3 cascade in anaplastic thyroid carcinoma cells. Our study demonstrates that this novel triblock polymer, PAMAM-PEG-cRGD, exhibits negligible cytotoxicity, effective transfection, “smart” cancer targeting, and therefore is a promising siRNA nanocarrier. Keywords: small interfering RNA, dendrimer, gene silencing, human ether-à-go-go-related gene, anaplastic thyroid cancer
format article
author Li G
Hu Z
Yin H
Zhang Y
Huang X
Wang S
Li W
author_facet Li G
Hu Z
Yin H
Zhang Y
Huang X
Wang S
Li W
author_sort Li G
title A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells
title_short A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells
title_full A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells
title_fullStr A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells
title_full_unstemmed A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells
title_sort novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic rgd for “smart” small interfering rna delivery and in vitro antitumor effects by human ether-à-go-go-related gene silencing in anaplastic thyroid carcinoma cells
publisher Dove Medical Press
publishDate 2013
url https://doaj.org/article/be14d62e2bbe4e19b8ac5d48eb8478ec
work_keys_str_mv AT lig anoveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT huz anoveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT yinh anoveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT zhangy anoveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT huangx anoveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT wangs anoveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT liw anoveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT lig noveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT huz noveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT yinh noveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT zhangy noveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT huangx noveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT wangs noveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
AT liw noveldendriticnanocarrierofpolyamidoaminepolyethyleneglycolcyclicrgdforldquosmartrdquosmallinterferingrnadeliveryandinvitroantitumoreffectsbyhumanetheragravegogorelatedgenesilencinginanaplasticthyroidcarcinomacells
_version_ 1718399476733837312