Efficient transfer entropy analysis of non-stationary neural time series.
Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from t...
Guardado en:
Autores principales: | Patricia Wollstadt, Mario Martínez-Zarzuela, Raul Vicente, Francisco J Díaz-Pernas, Michael Wibral |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/be1a7bdd7a4a4f8599154998fc17283b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Method for Estimating the Entropy of Time Series Using Artificial Neural Networks
por: Andrei Velichko, et al.
Publicado: (2021) -
Increasing the sensitivity of real-time method for diagnostic of autogenerators phase synchronization based on their non-stationary time series
por: Kurbako, Aleksandr Vasilievich, et al.
Publicado: (2021) -
Discriminating chaotic and stochastic time series using permutation entropy and artificial neural networks
por: B. R. R. Boaretto, et al.
Publicado: (2021) -
Detecting departures from meta-ellipticity for multivariate stationary time series
por: Bücher Axel, et al.
Publicado: (2021) -
Interevent-time distribution and aftershock frequency in non-stationary induced seismicity
por: Richard A. J. Post, et al.
Publicado: (2021)