Structure determination of an amorphous drug through large-scale NMR predictions

Determining the structure of amorphous solids is important for optimization of pharmaceutical formulations, but direct relation of molecular dynamics (MD) simulations and NMR to achieve this is challenging. Here, the authors use a machine learning model of chemical shifts to solve the atomic-level s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manuel Cordova, Martins Balodis, Albert Hofstetter, Federico Paruzzo, Sten O. Nilsson Lill, Emma S. E. Eriksson, Pierrick Berruyer, Bruno Simões de Almeida, Michael J. Quayle, Stefan T. Norberg, Anna Svensk Ankarberg, Staffan Schantz, Lyndon Emsley
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/be50705d880e426e950afb5d4b6e95a0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:be50705d880e426e950afb5d4b6e95a0
record_format dspace
spelling oai:doaj.org-article:be50705d880e426e950afb5d4b6e95a02021-12-02T16:51:29ZStructure determination of an amorphous drug through large-scale NMR predictions10.1038/s41467-021-23208-72041-1723https://doaj.org/article/be50705d880e426e950afb5d4b6e95a02021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23208-7https://doaj.org/toc/2041-1723Determining the structure of amorphous solids is important for optimization of pharmaceutical formulations, but direct relation of molecular dynamics (MD) simulations and NMR to achieve this is challenging. Here, the authors use a machine learning model of chemical shifts to solve the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR with predicted shifts for MD simulations of large systems.Manuel CordovaMartins BalodisAlbert HofstetterFederico ParuzzoSten O. Nilsson LillEmma S. E. ErikssonPierrick BerruyerBruno Simões de AlmeidaMichael J. QuayleStefan T. NorbergAnna Svensk AnkarbergStaffan SchantzLyndon EmsleyNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Manuel Cordova
Martins Balodis
Albert Hofstetter
Federico Paruzzo
Sten O. Nilsson Lill
Emma S. E. Eriksson
Pierrick Berruyer
Bruno Simões de Almeida
Michael J. Quayle
Stefan T. Norberg
Anna Svensk Ankarberg
Staffan Schantz
Lyndon Emsley
Structure determination of an amorphous drug through large-scale NMR predictions
description Determining the structure of amorphous solids is important for optimization of pharmaceutical formulations, but direct relation of molecular dynamics (MD) simulations and NMR to achieve this is challenging. Here, the authors use a machine learning model of chemical shifts to solve the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR with predicted shifts for MD simulations of large systems.
format article
author Manuel Cordova
Martins Balodis
Albert Hofstetter
Federico Paruzzo
Sten O. Nilsson Lill
Emma S. E. Eriksson
Pierrick Berruyer
Bruno Simões de Almeida
Michael J. Quayle
Stefan T. Norberg
Anna Svensk Ankarberg
Staffan Schantz
Lyndon Emsley
author_facet Manuel Cordova
Martins Balodis
Albert Hofstetter
Federico Paruzzo
Sten O. Nilsson Lill
Emma S. E. Eriksson
Pierrick Berruyer
Bruno Simões de Almeida
Michael J. Quayle
Stefan T. Norberg
Anna Svensk Ankarberg
Staffan Schantz
Lyndon Emsley
author_sort Manuel Cordova
title Structure determination of an amorphous drug through large-scale NMR predictions
title_short Structure determination of an amorphous drug through large-scale NMR predictions
title_full Structure determination of an amorphous drug through large-scale NMR predictions
title_fullStr Structure determination of an amorphous drug through large-scale NMR predictions
title_full_unstemmed Structure determination of an amorphous drug through large-scale NMR predictions
title_sort structure determination of an amorphous drug through large-scale nmr predictions
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/be50705d880e426e950afb5d4b6e95a0
work_keys_str_mv AT manuelcordova structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT martinsbalodis structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT alberthofstetter structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT federicoparuzzo structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT stenonilssonlill structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT emmaseeriksson structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT pierrickberruyer structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT brunosimoesdealmeida structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT michaeljquayle structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT stefantnorberg structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT annasvenskankarberg structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT staffanschantz structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
AT lyndonemsley structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions
_version_ 1718382940761620480