Structure determination of an amorphous drug through large-scale NMR predictions
Determining the structure of amorphous solids is important for optimization of pharmaceutical formulations, but direct relation of molecular dynamics (MD) simulations and NMR to achieve this is challenging. Here, the authors use a machine learning model of chemical shifts to solve the atomic-level s...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/be50705d880e426e950afb5d4b6e95a0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:be50705d880e426e950afb5d4b6e95a0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:be50705d880e426e950afb5d4b6e95a02021-12-02T16:51:29ZStructure determination of an amorphous drug through large-scale NMR predictions10.1038/s41467-021-23208-72041-1723https://doaj.org/article/be50705d880e426e950afb5d4b6e95a02021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23208-7https://doaj.org/toc/2041-1723Determining the structure of amorphous solids is important for optimization of pharmaceutical formulations, but direct relation of molecular dynamics (MD) simulations and NMR to achieve this is challenging. Here, the authors use a machine learning model of chemical shifts to solve the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR with predicted shifts for MD simulations of large systems.Manuel CordovaMartins BalodisAlbert HofstetterFederico ParuzzoSten O. Nilsson LillEmma S. E. ErikssonPierrick BerruyerBruno Simões de AlmeidaMichael J. QuayleStefan T. NorbergAnna Svensk AnkarbergStaffan SchantzLyndon EmsleyNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Manuel Cordova Martins Balodis Albert Hofstetter Federico Paruzzo Sten O. Nilsson Lill Emma S. E. Eriksson Pierrick Berruyer Bruno Simões de Almeida Michael J. Quayle Stefan T. Norberg Anna Svensk Ankarberg Staffan Schantz Lyndon Emsley Structure determination of an amorphous drug through large-scale NMR predictions |
description |
Determining the structure of amorphous solids is important for optimization of pharmaceutical formulations, but direct relation of molecular dynamics (MD) simulations and NMR to achieve this is challenging. Here, the authors use a machine learning model of chemical shifts to solve the atomic-level structure of the hydrated amorphous drug AZD5718 by combining dynamic nuclear polarization-enhanced solid-state NMR with predicted shifts for MD simulations of large systems. |
format |
article |
author |
Manuel Cordova Martins Balodis Albert Hofstetter Federico Paruzzo Sten O. Nilsson Lill Emma S. E. Eriksson Pierrick Berruyer Bruno Simões de Almeida Michael J. Quayle Stefan T. Norberg Anna Svensk Ankarberg Staffan Schantz Lyndon Emsley |
author_facet |
Manuel Cordova Martins Balodis Albert Hofstetter Federico Paruzzo Sten O. Nilsson Lill Emma S. E. Eriksson Pierrick Berruyer Bruno Simões de Almeida Michael J. Quayle Stefan T. Norberg Anna Svensk Ankarberg Staffan Schantz Lyndon Emsley |
author_sort |
Manuel Cordova |
title |
Structure determination of an amorphous drug through large-scale NMR predictions |
title_short |
Structure determination of an amorphous drug through large-scale NMR predictions |
title_full |
Structure determination of an amorphous drug through large-scale NMR predictions |
title_fullStr |
Structure determination of an amorphous drug through large-scale NMR predictions |
title_full_unstemmed |
Structure determination of an amorphous drug through large-scale NMR predictions |
title_sort |
structure determination of an amorphous drug through large-scale nmr predictions |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/be50705d880e426e950afb5d4b6e95a0 |
work_keys_str_mv |
AT manuelcordova structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT martinsbalodis structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT alberthofstetter structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT federicoparuzzo structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT stenonilssonlill structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT emmaseeriksson structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT pierrickberruyer structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT brunosimoesdealmeida structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT michaeljquayle structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT stefantnorberg structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT annasvenskankarberg structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT staffanschantz structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions AT lyndonemsley structuredeterminationofanamorphousdrugthroughlargescalenmrpredictions |
_version_ |
1718382940761620480 |