Structure determination of an amorphous drug through large-scale NMR predictions
Determining the structure of amorphous solids is important for optimization of pharmaceutical formulations, but direct relation of molecular dynamics (MD) simulations and NMR to achieve this is challenging. Here, the authors use a machine learning model of chemical shifts to solve the atomic-level s...
Guardado en:
Autores principales: | Manuel Cordova, Martins Balodis, Albert Hofstetter, Federico Paruzzo, Sten O. Nilsson Lill, Emma S. E. Eriksson, Pierrick Berruyer, Bruno Simões de Almeida, Michael J. Quayle, Stefan T. Norberg, Anna Svensk Ankarberg, Staffan Schantz, Lyndon Emsley |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/be50705d880e426e950afb5d4b6e95a0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Chemical shifts in molecular solids by machine learning
por: Federico M. Paruzzo, et al.
Publicado: (2018) -
Toughening Fe-based Amorphous Coatings by Reinforcement of Amorphous Carbon
por: Wei Wang, et al.
Publicado: (2017) -
The X-ray Sensitivity of an Amorphous Lead Oxide Photoconductor
por: Oleksandr Grynko, et al.
Publicado: (2021) -
Measurements of growing surface tension of amorphous–amorphous interfaces on approaching the colloidal glass transition
por: Divya Ganapathi, et al.
Publicado: (2018) -
Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells
por: Wanchun Xiang, et al.
Publicado: (2019)