Significantly enhancement of sunlight photocatalytic performance of ZnO by doping with transition metal oxides

Abstract In this study we report, the synthesis of ZnO and its doping with Transition Metal Oxides -TMO-, such as Cr2O3, MnO2, FeO, CoO, NiO, Cu2O and CuO. Various characterization techniques were employed to investigate the structural properties. The X-ray diffraction (XRD) data and Rietveld refine...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alfonso E. Ramírez, Marly Montero-Muñoz, Lizbeth L. López, J. E. Ramos-Ibarra, Jose A. H. Coaquira, Benoît Heinrichs, Carlos A. Páez
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/be55a136b47a4e72be31055d4cdd05d7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract In this study we report, the synthesis of ZnO and its doping with Transition Metal Oxides -TMO-, such as Cr2O3, MnO2, FeO, CoO, NiO, Cu2O and CuO. Various characterization techniques were employed to investigate the structural properties. The X-ray diffraction (XRD) data and Rietveld refinement confirmed the presence of TMO phases and that the ZnO structure was not affected by the doping with TMO which was corroborated using transmission Electron microscopy (TEM). Surface areas were low due to blockage of adsorption sites by particle aggregation. TMO doping concentration in the range of 3.7–5.1% was important to calculate the catalytic activity. The UV–Visible spectra showed the variation in the band gap of TMO/ZnO ranging from 3.45 to 2.46 eV. The surface catalyzed decomposition of H2O2 was used as the model reaction to examine the photocatalytic activity following the oxygen production and the systems were compared to bulk ZnO and commercial TiO2-degussa (Aeroxyde-P25). The results indicate that the introduction of TMO species increase significantly the photocatalytic activity. The sunlight photocatalytic performance in ZnO-doped was greater than bulk-ZnO and in the case of MnO2, CoO, Cu2O and CuO surpasses TiO2 (P25-Degussa). This report opens up a new pathway to the design of high-performance materials used in photocatalytic degradation under visible light irradiation.