Extremal Solutions for Caputo Conformable Differential Equations with p-Laplacian Operator and Integral Boundary Condition

The Caputo conformable derivative is a new Caputo-type fractional differential operator generated by conformable derivatives. In this paper, using Banach fixed point theorem, we obtain the uniqueness of the solution of nonlinear and linear Cauchy problem with the conformable derivatives in the Caput...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhongqi Peng, Yuan Li, Qi Zhang, Yimin Xue
Formato: article
Lenguaje:EN
Publicado: Hindawi-Wiley 2021
Materias:
Acceso en línea:https://doaj.org/article/be86aebda00d429aa6dffcb7be614afc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The Caputo conformable derivative is a new Caputo-type fractional differential operator generated by conformable derivatives. In this paper, using Banach fixed point theorem, we obtain the uniqueness of the solution of nonlinear and linear Cauchy problem with the conformable derivatives in the Caputo setting, respectively. We also establish two comparison principles and prove the extremal solutions for nonlinear fractional p-Laplacian differential system with Caputo conformable derivatives by utilizing the monotone iterative technique. An example is given to verify the validity of the results.