Stochastic Time Evolution, Information Geometry, and the Cramér-Rao Bound
We investigate the connection between the time evolution of averages of stochastic quantities and the Fisher information and its induced statistical length. As a consequence of the Cramér-Rao bound, we find that the rate of change of the average of any observable is bounded from above by its varianc...
Guardado en:
Autores principales: | Sosuke Ito, Andreas Dechant |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/be8bd99c38d2461abb8242d2d12606af |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quantum Advantage in Simulating Stochastic Processes
por: Kamil Korzekwa, et al.
Publicado: (2021) -
Tight Bounds on the Simultaneous Estimation of Incompatible Parameters
por: Jasminder S. Sidhu, et al.
Publicado: (2021) -
Phase-Space Geometry of Mass-Conserving Reaction-Diffusion Dynamics
por: Fridtjof Brauns, et al.
Publicado: (2020) -
Experimental Measurement of Relative Path Probabilities and Stochastic Actions
por: Jannes Gladrow, et al.
Publicado: (2021) -
Topology Protects Chiral Edge Currents in Stochastic Systems
por: Evelyn Tang, et al.
Publicado: (2021)