Molecular rheotaxis directs DNA migration and concentration against a pressure-driven flow

Implementing a nucleic acid preconcentration method can improve the sensitivity of microfluidic analysis systems. Here Friedrich et al. concentrate DNA by many orders of magnitude using pressure-driven flow, which could lead to a simple and practical microanalysis platform.

Guardado en:
Detalles Bibliográficos
Autores principales: Sarah M. Friedrich, Jeffrey M. Burke, Kelvin J. Liu, Cornelius F. Ivory, Tza-Huei Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/be96a85d1e7e4c87a20d2f0eaaddda44
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:be96a85d1e7e4c87a20d2f0eaaddda44
record_format dspace
spelling oai:doaj.org-article:be96a85d1e7e4c87a20d2f0eaaddda442021-12-02T14:42:08ZMolecular rheotaxis directs DNA migration and concentration against a pressure-driven flow10.1038/s41467-017-01214-y2041-1723https://doaj.org/article/be96a85d1e7e4c87a20d2f0eaaddda442017-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-01214-yhttps://doaj.org/toc/2041-1723Implementing a nucleic acid preconcentration method can improve the sensitivity of microfluidic analysis systems. Here Friedrich et al. concentrate DNA by many orders of magnitude using pressure-driven flow, which could lead to a simple and practical microanalysis platform.Sarah M. FriedrichJeffrey M. BurkeKelvin J. LiuCornelius F. IvoryTza-Huei WangNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Sarah M. Friedrich
Jeffrey M. Burke
Kelvin J. Liu
Cornelius F. Ivory
Tza-Huei Wang
Molecular rheotaxis directs DNA migration and concentration against a pressure-driven flow
description Implementing a nucleic acid preconcentration method can improve the sensitivity of microfluidic analysis systems. Here Friedrich et al. concentrate DNA by many orders of magnitude using pressure-driven flow, which could lead to a simple and practical microanalysis platform.
format article
author Sarah M. Friedrich
Jeffrey M. Burke
Kelvin J. Liu
Cornelius F. Ivory
Tza-Huei Wang
author_facet Sarah M. Friedrich
Jeffrey M. Burke
Kelvin J. Liu
Cornelius F. Ivory
Tza-Huei Wang
author_sort Sarah M. Friedrich
title Molecular rheotaxis directs DNA migration and concentration against a pressure-driven flow
title_short Molecular rheotaxis directs DNA migration and concentration against a pressure-driven flow
title_full Molecular rheotaxis directs DNA migration and concentration against a pressure-driven flow
title_fullStr Molecular rheotaxis directs DNA migration and concentration against a pressure-driven flow
title_full_unstemmed Molecular rheotaxis directs DNA migration and concentration against a pressure-driven flow
title_sort molecular rheotaxis directs dna migration and concentration against a pressure-driven flow
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/be96a85d1e7e4c87a20d2f0eaaddda44
work_keys_str_mv AT sarahmfriedrich molecularrheotaxisdirectsdnamigrationandconcentrationagainstapressuredrivenflow
AT jeffreymburke molecularrheotaxisdirectsdnamigrationandconcentrationagainstapressuredrivenflow
AT kelvinjliu molecularrheotaxisdirectsdnamigrationandconcentrationagainstapressuredrivenflow
AT corneliusfivory molecularrheotaxisdirectsdnamigrationandconcentrationagainstapressuredrivenflow
AT tzahueiwang molecularrheotaxisdirectsdnamigrationandconcentrationagainstapressuredrivenflow
_version_ 1718389776261840896