Deciphering protein evolution and fitness landscapes with latent space models

Multiple sequence alignments of proteins carry information about evolution, the protein’s fitness landscape and its stability in the face of mutations. Here, the authors demonstrate the utility of latent space models learned using variational autoencoders to infer these properties from sequences.

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Xinqiang Ding, Zhengting Zou, Charles L. Brooks III
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
Q
Accès en ligne:https://doaj.org/article/be97bb08e16b437b9a2c5f2e3d8550b1
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Multiple sequence alignments of proteins carry information about evolution, the protein’s fitness landscape and its stability in the face of mutations. Here, the authors demonstrate the utility of latent space models learned using variational autoencoders to infer these properties from sequences.