Deciphering protein evolution and fitness landscapes with latent space models

Multiple sequence alignments of proteins carry information about evolution, the protein’s fitness landscape and its stability in the face of mutations. Here, the authors demonstrate the utility of latent space models learned using variational autoencoders to infer these properties from sequences.

Guardado en:
Detalles Bibliográficos
Autores principales: Xinqiang Ding, Zhengting Zou, Charles L. Brooks III
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/be97bb08e16b437b9a2c5f2e3d8550b1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:be97bb08e16b437b9a2c5f2e3d8550b1
record_format dspace
spelling oai:doaj.org-article:be97bb08e16b437b9a2c5f2e3d8550b12021-12-02T17:01:46ZDeciphering protein evolution and fitness landscapes with latent space models10.1038/s41467-019-13633-02041-1723https://doaj.org/article/be97bb08e16b437b9a2c5f2e3d8550b12019-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13633-0https://doaj.org/toc/2041-1723Multiple sequence alignments of proteins carry information about evolution, the protein’s fitness landscape and its stability in the face of mutations. Here, the authors demonstrate the utility of latent space models learned using variational autoencoders to infer these properties from sequences.Xinqiang DingZhengting ZouCharles L. Brooks IIINature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-13 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xinqiang Ding
Zhengting Zou
Charles L. Brooks III
Deciphering protein evolution and fitness landscapes with latent space models
description Multiple sequence alignments of proteins carry information about evolution, the protein’s fitness landscape and its stability in the face of mutations. Here, the authors demonstrate the utility of latent space models learned using variational autoencoders to infer these properties from sequences.
format article
author Xinqiang Ding
Zhengting Zou
Charles L. Brooks III
author_facet Xinqiang Ding
Zhengting Zou
Charles L. Brooks III
author_sort Xinqiang Ding
title Deciphering protein evolution and fitness landscapes with latent space models
title_short Deciphering protein evolution and fitness landscapes with latent space models
title_full Deciphering protein evolution and fitness landscapes with latent space models
title_fullStr Deciphering protein evolution and fitness landscapes with latent space models
title_full_unstemmed Deciphering protein evolution and fitness landscapes with latent space models
title_sort deciphering protein evolution and fitness landscapes with latent space models
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/be97bb08e16b437b9a2c5f2e3d8550b1
work_keys_str_mv AT xinqiangding decipheringproteinevolutionandfitnesslandscapeswithlatentspacemodels
AT zhengtingzou decipheringproteinevolutionandfitnesslandscapeswithlatentspacemodels
AT charleslbrooksiii decipheringproteinevolutionandfitnesslandscapeswithlatentspacemodels
_version_ 1718382049421688832