Deciphering protein evolution and fitness landscapes with latent space models
Multiple sequence alignments of proteins carry information about evolution, the protein’s fitness landscape and its stability in the face of mutations. Here, the authors demonstrate the utility of latent space models learned using variational autoencoders to infer these properties from sequences.
Guardado en:
Autores principales: | Xinqiang Ding, Zhengting Zou, Charles L. Brooks III |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/be97bb08e16b437b9a2c5f2e3d8550b1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting the evolution of sex on complex fitness landscapes.
por: Dusan Misevic, et al.
Publicado: (2009) -
Evolution of new regulatory functions on biophysically realistic fitness landscapes
por: Tamar Friedlander, et al.
Publicado: (2017) -
Deep Learning Protein Conformational Space with Convolutions and Latent Interpolations
por: Venkata K. Ramaswamy, et al.
Publicado: (2021) -
Sexual recombination and increased mutation rate expedite evolution of Escherichia coli in varied fitness landscapes
por: George L. Peabody V, et al.
Publicado: (2017) -
Viral capsid proteins are segregated in structural fold space.
por: Shanshan Cheng, et al.
Publicado: (2013)