Deciphering protein evolution and fitness landscapes with latent space models
Multiple sequence alignments of proteins carry information about evolution, the protein’s fitness landscape and its stability in the face of mutations. Here, the authors demonstrate the utility of latent space models learned using variational autoencoders to infer these properties from sequences.
Enregistré dans:
Auteurs principaux: | Xinqiang Ding, Zhengting Zou, Charles L. Brooks III |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/be97bb08e16b437b9a2c5f2e3d8550b1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Predicting the evolution of sex on complex fitness landscapes.
par: Dusan Misevic, et autres
Publié: (2009) -
Evolution of new regulatory functions on biophysically realistic fitness landscapes
par: Tamar Friedlander, et autres
Publié: (2017) -
Deep Learning Protein Conformational Space with Convolutions and Latent Interpolations
par: Venkata K. Ramaswamy, et autres
Publié: (2021) -
Sexual recombination and increased mutation rate expedite evolution of Escherichia coli in varied fitness landscapes
par: George L. Peabody V, et autres
Publié: (2017) -
Viral capsid proteins are segregated in structural fold space.
par: Shanshan Cheng, et autres
Publié: (2013)