Machine Learning-Based Identification of Potentially Novel Non-Alcoholic Fatty Liver Disease Biomarkers
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease that presents a great challenge for treatment and prevention.. This study aims to implement a machine learning approach that employs such datasets to identify potential biomarker targets. We developed a pipeline to identify potenti...
Guardado en:
Autores principales: | Roshan Shafiha, Basak Bahcivanci, Georgios V. Gkoutos, Animesh Acharjee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/bea0a8a742a8492d9389289df0e22e20 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analysis of Common Pathways and Markers From Non-Alcoholic Fatty Liver Disease to Immune-Mediated Diseases
por: Rocío Gallego-Durán, et al.
Publicado: (2021) -
Integrative lipidomic and transcriptomic study unravels the therapeutic effects of saikosaponins A and D on non-alcoholic fatty liver disease
por: Xiaojiaoyang Li, et al.
Publicado: (2021) -
Hepatoprotective Effects of Tribulus terrestris Hydro-Alcholic Extract on Non-Alcoholic Fatty Liver- Induced Rats
por: Almasi,Fatemeh, et al.
Publicado: (2017) -
Correlation between Non-Alcoholic Fatty Liver Disease (NAFLD) fibrosis score (NFS) with Left Ventricular Mass Index (LVMI) in patients with NAFLD
por: Tri Ferry Rachmatullah, et al.
Publicado: (2021) -
The Effect of Mycotoxins and Silymarin on Liver Lipidome of Mice with Non-Alcoholic Fatty Liver Disease
por: Kamila Bechynska, et al.
Publicado: (2021)